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Abstract—With the rise of quantum computing, traditional
cryptographic methods are increasingly vulnerable. This necessi-
tates the development of post-quantum cryptographic solutions.
Attribute-Based Encryption (ABE) offers a promising approach
for fine-grained access control, particularly in cloud computing.
However, implementing post-quantum ABE efficiently remains
a challenge due to the computational complexity of the under-
lying cryptographic operations. This paper focus on a Rank-
Based Cryptography (RBC) approach, leveraging rank error-
correcting codes to enhance security against quantum attacks.
To optimize performance, we implemented the scheme in C
using the RBC library, enabling efficient operations on resource-
constrained environments. Our initial development includes the
setup phase and a partial key generation module, providing a
foundation for further optimizations. Future work will explore
Field Programmable Gate Array (FPGA) acceleration to further
enhance computational efficiency. This study contributes to the
advancement of practical post-quantum ABE implementations,
bridging the gap between security and performance. Our initial
development includes the setup phase and a partial key gener-
ation module, providing a foundation for further optimizations.
Preliminary benchmarks using the RBC library show that the
setup phase executes in under 50 ms, and key generation
requires around 150–200 ms depending on attribute count. Our
results, obtained on a standard Central Processing Unit (CPU),
validate the feasibility of rank-based cryptographic primitives
in constrained environments. Future work will explore FPGA
acceleration to further enhance computational efficiency. This
study contributes to the advancement of practical post-quantum
ABE implementations, bridging the gap between security and
performance.

Index Terms—Attribute Based Encryption, ABE, Cryptog-
raphy, FPGA, Cloud Computing, Post-quantum, Post-quantum
cryptography, Quantum attribute-based encryption

I. INTRODUCTION

The rise of quantum computers threatens traditional cryp-
tographic standards such as RSA and Diffie-Hellman, which

rely on hard problems that quantum algorithms, such as
Shor’s, could efficiently solve. While these methods are secure
against classical attacks, quantum computing could break
them, prompting international efforts like the NIST competi-
tion to develop post-quantum cryptography (PQC) standards.
[1] Among modern cryptographic approaches, ABE plays a
key role, particularly in cloud computing, by enabling access
control based on attributes. In ABE, data is encrypted under
an access policy, and only users with matching attributes can
decrypt it.

Though post-quantum ABE algorithms exist, none have
been standardized yet. Their complexity, especially on hard-
ware platforms, remains a challenge. Initially based on Elliptic
Curve Cryptography (ECC), ABE has evolved toward lattice-
based schemes to resist quantum threats. ECC is a widely
adopted cryptographic technique known for its high security
and efficiency, offering equivalent protection to traditional
methods such as RSA with much smaller key sizes. [2] How-
ever, ECC is not post-quantum secure, as it relies on the elliptic
curve discrete logarithm problem, which quantum computers
could theoretically solve using Shor’s algorithm. Elliptic Curve
Attribute-Based Encryption (EC-ABE) enhances traditional
ABE by integrating ECC, resulting in improved efficiency and
reduced key sizes. This integration is particularly advantageous
for resource-constrained environments such as Internet of
Things (IoT) devices and mobile applications. [3]

A lattice is a mathematical structure that consists of a
set of points in a multidimensional space, generated by all
possible integer linear combinations of a given set of n linearly
independent vectors. Lattice-based ABE schemes are consid-
ered quantum-safe because their security relies on problems
that are difficult to solve even for quantum computers. In
terms of attack resistance, lattice-based ABE schemes are also



resistant to collusion, meaning that a group of unauthorized
users cannot combine their keys to decrypt data they are not
individually authorized to access. Lattice-based ABE schemes
has also a considerable computational cost. For example, a
scheme based on Learning With Errors (LWE) may see the
size of the keys increase proportionally with the number of
attributes per user , leading to significant storage overheads
in large-scale systems. All parts of the encrypt and decrypt
processes are also computationally expensive. This can result
in slower operations, posing a challenge for implementing
these schemes at scale in cloud computing environments.

Error-correcting codes play a key role in systems de-
signed to withstand the challenges of the post-quantum era.
Codes such as Calderbank-Shor-Steane (CSS) are essential
for ensuring data integrity and confidentiality against physical
disruptions and quantum attacks. Unlike classical codes like
Hamming, CSS codes leverage quantum mechanical properties
such as entanglement and superposition to simultaneously
correct bit and phase errors on qubits. CSS codes are widely
used in protocols like Quantum Key Distribution (QKD) and
cryptographic systems resistant to the computational power of
quantum computers, providing a robust foundation for secure
communication and computation.

In ABE schemes designed for the post-quantum era, CSS
codes enhance the security and efficiency of secret sharing.
CSS codes enable the distribution of secret keys in the form
of qubits, ensuring that they can only be reconstructed by
users whose attributes satisfy a predefined access policy. This
approach guarantees that authorized users can reconstruct the
necessary information, even in noisy or perturbed environ-
ments. By integrating these codes, ABE schemes become
resistant to algorithmic attacks, such as those leveraging Shor’s
algorithm, while maintaining flexibility for dynamic and scal-
able access policies. CSS codes thus form a fundamental
component of cryptographic systems tailored to the challenges
of the post-quantum era. [4]

To overcome the computational challenges of Lattice-based
ABE schemes, hardware solutions such as Field Programmable
Gate Arrays could be employed. These dedicated hardware
units can accelerate the complex computations involved in lat-
tice operations, they are particularly efficients when computing
parallel tasks like matrix multiplications. By using FPGA, it
is possible to reduce the load on the CPU and significantly
improve the efficiency of ABE systems while maintaining high
security levels. Several post-quantum algorithms have already
been implemented on FPGA boards, with some available as
open-source projects [5]. Additionally, a CP-ABE implemen-
tation on FPGA has been previously developed [6].

A common practice used in these implementations to en-
hance their performance is to design optimized dedicated
modules for simple arithmetic operations. [6] It is also possible
to parallelize costly and frequently used operations such as
polynomial multiplication and modular reduction. For this
purpose, solutions based on the Number-Theoretic Transform
(NTT) and Barrett modular reduction algorithm are often
employed in other algorithms, and can be transposed to an

ABE implementation [7]
Lattice-based ABE schemes offer a robust and quantum-safe

solution for secure data access management in cloud storage
environments. While they provide significant advantages in
terms of resistance to quantum attacks and flexible access poli-
cies, challenges remain in terms of performance, in particular
the size of the parameters and computational costs.

Most cryptographic algorithms are implemented in C due
to its efficiency, portability, and close interaction with hard-
ware resources. These characteristics make C a preferred
choice for developing performance-critical applications, such
as cryptographic operations. In the context of FPGA-based
implementations, C enables low-level hardware control and
optimization, ensuring that computationally intensive tasks,
such as polynomial multiplication and modular reduction, are
executed efficiently. Additionally, C benefits from a well-
established ecosystem of cryptographic libraries, facilitating
secure and reliable implementations. Leveraging these advan-
tages, we aim to explore how to implement post-quantum cryp-
tographic algorithms on FPGA platforms to address existing
performance challenges and enhance scalability for real-world
applications.

II. BACKGROUND AND REQUIRED KNOWLEDGE

A. Symbols used in this paper

TABLE I
SYMBOLS TABLE

Symbol Description
m Degree of the field-extension Fqm

n Length of codewords in Fn
qm

q Size of the base field Fq

r Rank of the encryption support subspace E ⊂ Fn
qm

d Rank of the secret-key support subspace F ⊂ Fn
qm

t Output length (in bits) of ∆ and hi functions
Fqm Extension field of degree m over Fq

Fn
qm n-dimensional vector space over Fqm

wtR(x) Rank of x: dimFq ⟨x1, x2, . . . , xn⟩
⟨x⟩Fq The support of the components of vector x
bs Size of the Bloom filter bit-array
k Number of independent hash functions hi, . . . , hk

hi Independent hash functions {0, 1}∗ → {0, 1}t
BF (x) Bloom filter of the attribute set x
Att Attributes set for the Bloom Filter (Keys, V alues)

J Hash function {0, 1}bs → Fn
qm

∆ Hash function Fn
qm → {0, 1}t

pk = h Public Key
sk = (F, x, y) Private Key

B. Operations over finite fields

Let u = (u0, u1, . . . , un−1) ∈ Fn
qm and v =

(v0, v1, . . . , vn−1) ∈ Fn
qm be two vectors over the finite field

extension Fqm . Each vector can be naturally associated with
a polynomial in the quotient ring Fqm [X]/(Xn − 1).

The addition of two vectors u and v corresponds to the
addition of their associated polynomials.

u(X) + v(X) =

n−1∑
k=0

(uk + vk)X
k (1)



The multiplication u · v ∈ Fn
qm is defined as the vector

corresponding to the product of the two polynomials modulo
Xn − 1. [8]

u · v =

(
n−1∑
i=0

viX
i

)
·

n−1∑
j=0

ujX
j

 mod (Xn − 1) (2)

C. Rank Metric

The rank metric is a distance measure defined over vectors
or matrices with entries in an extension field Fqm . For a
vector x ∈ Fn

qm , its rank weight, denoted wtR(x), is defined
as the dimension of the Fq-linear subspace generated by the
components of x when viewed as elements of Fqm .

wtR(x) = dimFq ⟨x1, x2, . . . , xn⟩ (3)

Similarly, the rank distance between two vectors x, y ∈ Fn
qm

is defined as wtR(x− y). [9]
This metric is particularly suited for cryptographic applica-

tions and network coding, where errors may affect multiple
positions in a correlated manner. Unlike the Hamming metric,
which counts the number of differing components, the rank
metric captures the linear dependencies among entries over
the base field.

D. Difficult problems in rank metric

The fundamental challenge in rank-metric cryptography is
the Rank Syndrome Decoding (RSD) problem: given a matrix
H ∈ F(n−l)×n

qm , a syndrome s, and a target rank r, the goal is
to find a vector x of rank r such that HxT = s. This problem
has been shown to be NP-hard via a randomized reduction. Its
inherent difficulty lies in the vast number of possible solutions,
as the count of rank-r subspaces in Fn

qm scales roughly like
qrm, making exhaustive search infeasible for large parameters.
[10]

E. LRPC codes

Low Rank Parity Check (LRPC) codes are a class of error-
correcting codes used in cryptographic schemes based on
the rank metric. They rely on the construction of a parity-
check matrix whose entries belong to a low-rank subspace,
enabling efficient decoding algorithms. LRPC codes offer
strong security guarantees while maintaining compact key
sizes, making them suitable for post-quantum cryptography.
Their structure enables the design of efficient trapdoor func-
tions used in encryption and signature schemes. Rollo and
other rank-metric-based systems often use LRPC codes for
their performance and security. [11]

F. Rank Support Recovery (RSR)

The Rank Support Recovery (RSR) algorithm is a decoding
procedure for rank metric codes that extracts the error support,
a subspace E characterizing the structure of the error.

Given a syndrome vector s, RSR computes the intersection
of transformed subspaces derived from to isolate E. Formally,
for an input syndrome s ∈ Fn

qm and a rank support space

F ⊆ Fqm with basis {F1, . . . , Fd}, RSR outputs the support
E such that:

E =

d⋂
i=1

F−1
i · S, (4)

where S = ⟨s⟩Fq
is the Fq-linear span of s. [10]

The algorithm is given by Algorithm 1.

Algorithm 1: Rank Support Recovery (RSR) [12]
Input: Syndrome vector s ∈ Fn

qm , support space
F = {F1, . . . , Fd} ⊆ Fqm

Output: Error support subspace E

1 S ← ⟨s⟩Fq

2 S ← GaussElim(S)
3 for i← 1 to d do
4 F−1

i ← Inverse(Fi)
5 Si ← F−1

i · S

6 E ← S1

7 for i← 2 to d do
8 E ← E ∩ Si

9 E ← RREF(E)
10 return E

G. Probability of failure in LRPC

In a rank metric code of length n and dimension l, the
LRPC decoding fails with probability ≤ q−(n−l+1−rd) and has
computational complexity O(4r2d2m+r2n2) when rd ≤ n−l
where r denotes the rank of the error support and d the rank
of the LRPC. [10]

H. Bloom filter

1) Principle: A Bloom filter is a probabilistic data structure
designed to efficiently test whether an element belongs to a
set, offering high space efficiency. It guarantees the absence of
false negatives. If the filter indicates that an element is not in
the set, this is always correct. However, it may produce false
positives, it might indicate that an element is in the set when
it is not. [13]

The Bloom filter consists of a bit array of size bs, initially
filled with zeros, and k independent hash functions h1, . . . , hk

that map elements to positions in the array. To insert an
element a into the filter, the positions h1(a), . . . , hk(a) are
computed and the corresponding bits in the array are set to 1.
To test whether an element b is in the set, we need to check
if all bits at positions h1(b), . . . , hk(b) are set to 1. If so, b is
probably in the set; if any of them is 0, then b is definitely
not in the set. [13]

Note : We applied the modulo operation with bs =
bloom filter size to ensure that the hash output stays within
the bounds of the Bloom filter array, thereby preventing buffer
overflows in case a hash function returns an index that exceeds
the array size.



Algorithm 2: BloomFilter [13]
Input: Set A, hash functions {h1, . . . , hk}, integer bs
Output: Bloom filter array

1 Initialize filter as an array of bs bits set to 0;
2 foreach ai ∈ A do
3 foreach hj ∈ {h1, . . . , hk} do
4 filter[hj(ai)%bs]← 1;

5 return filter

2) False positive rate: The probability of a false positive
in a Bloom filter is given by the Equation 5.

p =
(
1− e−

kn
bs

)k
(5)

where:

• k is the number of independent hash functions used,
• n is the number of elements inserted into the filter,
• bs is the size of the Bloom filter in bits.

This formula assumes uniform and independent hashing.
The false positive rate increases with the number of elements
n and decreases with the size of the filter bs and a well-chosen
number of hash functions k. In practice, there is a trade-off:
increasing bs and k can reduce the false positive probability,
but it also increases the memory usage and the size of the
ciphertext when the Bloom filter is included in cryptographic
schemes. [13]

Therefore, parameter selection is crucial. For a given ratio
m/n, the optimal number of hash functions that minimizes
the false positive rate is given by the Equation 6.

kopt =
bs
n

ln 2 (6)

Choosing k close to this value ensures a good balance
between accuracy and efficiency. [13]

III. THE SCHEME

A. Presentation

In this paper, we propose a new scheme built upon the
ROLLO-II Algorithm [14], extended with an Attribute-Based
Encryption layer. This scheme, whose system is illustrated
in Figure 1, constitutes of a public-key encryption system
based on low-rank parity-check (LRPC) codes, analogous to
the McEliece cryptosystem in the rank metric setting.

t

Fig. 1. System model architecture

B. Scheme specification

a) Setup: We choose the parameters d, r, m, and n,
as well as two hash functions J : {0, 1}m → Fn

qm and
∆ : Fn

qm → {0, 1}t, with t the length of the bit array
output. We specifically choose q = 2, thereby operating over
the binary field F2. This choice is motivated by the fact
that addition in F2 corresponds to bitwise XOR operations,
which are extremely efficient. Consequently, computations
over F2 are well-suited for cryptographic applications where
performance is critical. For the Bloom filter, we needed to
choose the size of the filter bs and k hash functions.

b) Keygen: The Keygen phase is the same as in Rollo-
I and Rollo-II. A random support F is generated, and two
elements x, y ∈ F are selected. The public key is then
computed as pk = h = x−1y, while the secret key is defined as
sk = (F, x, y). The pseudocode of this algorithm is presented
in Algorithm 3. [14]

Algorithm 3: Rollo-II Keygen [14]
Input: A rank d
Output: Public key pk and secret key sk

1 Generate a random support F of rank d;
2 Choose x, y ∈ F ;
3 Compute the public key: pk ← x−1y ;
4 Compute the secret key: sk ← (F, x, y) ;
5 return pk, sk

c) Encryption: Encryption requires the public key
pk, a list of attributes(s) of the recipient(s) Att (pairs of
(key, value)), and a message plaintext as input.

First, a random subspace E ⊂ Fn
qm of dimension r is

generated, and two vectors (e1, e2) ∈ E2 are selected.

Then, the following steps are performed:
1) compute cipher = e1 + e2 × pk



2) derive s = J(BF (Att))
3) compute cipher′ = cipher · s
4) finally enc = plaintext⊕∆(cipher′)

The final message to transmit is

M = (enc, cipher′, BF (Attkeys)) (7)

The pseudocode of the algorithm is defined in Algorithm 4..

Algorithm 4: Encryption
Input: d, pk, recipient(s) attribute(s) Att, plaintext
Output: Encrypted message M

1 Generate a random subspace E ⊂ Fn
qm of dim r ;

2 Select two vectors e1, e2 ∈ E2 ;
3 cipher ← e1 + e2 × pk ;
4 s← J(BF (Att)) ;
5 cipher′ ← cipher · s ;
6 enc←M ⊕∆(cipher′) ;
7 return M = (enc, cipher’, BF (Attkeys))

Note: Only the message M and the Bloom filter of the
attribute keys, BF (Attkeys) are transmitted; the Bloom filter
of the attributes themselves, BF (Att), is not sent.

d) Decryption: For decryption, the Bloom filter
BF (Att) is reconstructed using BF (Attkeys) and the actual
attribute values Att (the receiver’s attributes), as detailed in
Algorithm 5.

Algorithm 5: BF Recover Algorithm
Input: BF (Keys), recipient(s) attribute(s) Att
Output: Recovered Bloom Filter M

1 BFout ← {0}bs ;
2 foreach (key, value) in Att do
3 if key ∈ BF (Keys) then
4 Add (key, value) to BFout;

5 return BFout

Then compute s = J(BF (Att)), recover cipher = cipher′·
s−1, and compute E = RSR(x · cipher, F ).
Finally, the original message is recovered with

decode = enc⊕∆(E) (8)

The pseudocode of the algorithm is defined in Algorithm 6.

C. Implementation

a) Language: The implementation was developed in C, a
low-level language well-suited for cryptographic applications
due to its performance and fine-grained control over memory.
This choice also aligns with the need for compatibility with
embedded systems or FPGA environments.

Algorithm 6: Decryption
Input: M = (enc, cipher′, BF (Attkeys),

sk = (F, x, y), MyAtt
Output: The plaintext

1 BF (Att)← BF Recover(MyAtt,BF (Attkeys)) ;
2 s← J(BF (Att)) ;
3 cipher ← cipher′ · s−1 ;
4 E ← RSR(x · cipher, F ) ;
5 plaintext← enc⊕∆(E) ;
6 return plaintext

b) RBC Library: We used the RBC Lib – Rank-Based
Cryptography library [12], an open-source C library imple-
menting several post-quantum encryption schemes based on
rank metric codes. This library provides efficient primitives
for encoding, decoding, and key generation, which were
instrumental in constructing the presented scheme.

In addition, RBC Lib offers a comprehensive set of low-
level algebraic tools, such as linear system solvers and oper-
ations over finite fields, which greatly facilitated the potential
implementation of alternative cryptographic schemes within
the same framework.

c) Repository: The full implementation, including source
code and example usage, is available on our public repository:
https://github.com/killianmarty/Rank-Based-ABE-PKE.

D. Decrypting failure rate

a) RSR: Since the Rank Support Recovery (RSR) algo-
rithm can fail, and is essential to decrypt data, a cipher can
be not decryptable with the same probability as the RSR fail
which is in our case, as expressed in Equation 9. [15].

DFR ≤ q−(d−1)(m−rd−r) + q−(n−rd+1) (9)

E. Parameters

For this scheme, parameters are the following:
• m : Size of x ∈ Fqm extension field elements.
• n : Size of x ∈ Fn

qm vectors elements.
• r : Rank of the support E (used for encryption).
• d : Rank of the private key support F (used for decryp-

tion).
The choice of these parameters affects directly the scheme

security but also the decryption failure rate, so they must be
chosen carefully.

The rank r and d must be low as defined by LRPC
codes. If they are too high, the RSR algorithm will probably
fail or take too much time to compute.
m and n increases the security but also the computational

complexity.

In our implementation, the choice of parameters m and
n is limited as following:

• m : 67, 83, 97, 127, 151 and 181.
• n : 83, 113, 149, 179, 189, 193 and 211.

https://rbc-lib.org/
https://rbc-lib.org/
https://github.com/killianmarty/Rank-Based-ABE-PKE


F. Security

1) Security of ROLLO-II layer: The ROLLO-II layer en-
sures post-quantum security based on the rank metric. For each
security level, the chosen parameters achieve a negligible de-
coding failure rate (DFR), ensuring that legitimate ciphertexts
can be decrypted reliably: [12]

• 128-bit security : DFR ≈ 2−134

• 192-bit security : DFR ≈ 2−130

• 256-bit security : DFR ≈ 2−136

The security is independent of the ABE layer and relies
solely on the hardness of the rank syndrome decoding
problem, which is believed to be resistant even to quantum
attacks.

2) Security of ABE layer:
a) Bloom Filter false positives consequences: The ABE

layer uses Bloom Filters to efficiently check attribute sets.
Since Bloom Filters are probabilistic, they may return false
positives. This means an unauthorized user might satisfy an
access policy by mistake. However, a false positive at this
stage does not imply access to the plaintext, as the message
remains protected by the ROLLO-II encryption. Although a
false positive, given by the probability (Equation 5) may allow
an access policy check to pass incorrectly, the attacker still
cannot decrypt the ciphertext without the correct ROLLO-II
private key. By choosing appropriate parameters to keep p
low (e.g., < 2−20), the probability of unauthorized decryption
remains negligible.

3) Parameters for each level of security: The parameters
required to assure security levels are listed below.

TABLE II
PARAMETERS FOR EACH SECURITY LEVEL

Security Level N M R D DFR
128 189 83 7 8 2−134

192 193 97 8 8 2−130

256 211 97 8 9 2−136

G. Key sizes

a) Private Key Size.: The private key size |sk| is given
by the sum of size of the tuple (F, x, y), that is :

|sk| = (d+ 2n) ·m log2(q) (basis of F ) (10)

Which is the size of F plus the size of x and y. log2 q is the
size of one element, but we are working with binary elements
(so q = 2).

b) Public Key Size.: The public key pk is a single
element h = x−1y, where x, y ∈ Fn

qm . Since h is a vector
of length n over Fqm , the size of the public key |pk| is:

|pk| = n ·m · log2(q) bits (11)

[15]

For typical parameter choices in ROLLO-II (e.g., q = 2,
m = 83, n = 189, d = 8), we obtain the following sizes.

|pk| = 83·189 = 15687 bits, |sk| = (8+2·189)·83 = 32038 bits

These compact key sizes contribute to the overall efficiency
of the scheme, particularly in resource-constrained environ-
ments, which is a key motivation for code-based post-quantum
cryptography. However, storing the random seed would be
more memory efficient, as it only requires 40 bytes whether
it is 128-bit or 192-bit security levels, or 48 bytes for 256-bit
security level [16]. But it is not the main propose of this paper.

c) Cipher Size: The ciphertext is given by:

M = (enc, cipher′, BF (Attkeys)))

Then the total size of M in bits is:

|M | = |enc|︸︷︷︸
=ℓ

+ |cipher′|︸ ︷︷ ︸
=n·m

+ |BF (Attkeys)|︸ ︷︷ ︸
=bs

Hence, the ciphertext size equation [17] is:

|M | = ℓ+ n ·m+ bs bits (12)

• |enc| = ℓ since it is the XOR of the plaintext with a hash
of fixed size.

• |cipher′| = n ·m bits, as cipher′ ∈ Fn
qm .

• The Bloom filter size bs depends on the number of
attribute keys and the desired false-positive rate p. [17]
It can be approximated as:

bs ≈ −
|Att keys| · ln(p)

(ln 2)2
(13)

H. Limitations
a) Restricted Policy Expressiveness: The current scheme

only supports conjunctive (”AND”) attribute policies,
where decryption requires all specified attributes to be sat-
isfied. This excludes more flexible policies such as:

• Disjunctive (”OR”) access (e.g., ”Admin OR Auditor”)
• Threshold-based policies: Access is granted if at least

k out of n attributes are satisfied. For example, a policy
like (2 of {A,B,C}) means any two attributes among
A, B, and C are sufficient.

• Non-monotonic policies: These allow negation of at-
tributes (e.g., A ∧ ¬B). They support rules that exclude
certain attributes, enabling more expressive but more
complex policies.

This limitation reduces practicality in scenarios requiring
granular access control (e.g., healthcare systems where mul-
tiple roles might need access). Future work could integrate
Linear Secret Sharing Schemes (LSSS) or monotone span
programs to address this [18].

b) Non-Zero Decryption Failure Rate: The Rank Sup-
port Recovery (RSR) algorithm may fail with a little proba-
bility (Equation 9). While negligible for conservative param-
eters, this introduces a probabilistic correctness guarantee.
Applications demanding deterministic decryption (e.g., real-
time systems) would require post-processing or redundancy
mechanisms.



c) Bloom Filter False Positives: The ABE layer’s re-
liance on Bloom filters introduces a false positive rate (Equa-
tion 5). While false positives do not break confidentiality
(decryption still requires the private key), they may:

• Increase unnecessary computation for unauthorized
users

• Require careful parameter tuning (e.g., m ≥ 8n, k ≈
(m/n) ln 2) to maintain p < 2−20

d) Parameter Constraints: The RBC library restricts m
and n to fixed values (e.g., m ∈ {67, 83, . . . }), limiting adapt-
ability. Larger m,n improve security but increase ciphertext
size and computation time, while smaller values risk reduced
failure tolerance.

e) Lack of Hardware Acceleration: The current imple-
mentation relies on Advanced Vector Extensions (AVX)
optimized CPU code, leaving FPGA/ASIC acceleration
unexplored. Critical operations (e.g., finite field inversion in
RSR) could benefit from hardware offloading but require RTL
co-design.

IV. ACCELERATION

A. Required accelerations

a) RSR: The RSR algorithm is well-suited for FPGA
acceleration due to its reliance on finite field arithmetic and
iterative subspace operations. FPGAs exploit fine-grained par-
allelism to optimize critical bottlenecks:

1) Finite field inversion (Step 4) can be implemented
via pipelined extended Euclidean algorithms or precom-
puted lookup tables [19].

2) Subspace intersections (Steps 7–8) benefit from custom
systolic arrays for low-latency nullspace computation.

3) Gaussian elimination (Steps 2,9) can be accelerated
through dedicated arithmetic units. [20]

FPGAs prevent memory bottlenecks for small-field operations
and enable deterministic latency.

b) Multiplications: Finite field multiplications, particu-
larly in large extension fields like Fqm , are fundamental to
most cryptographic primitives. Optimizing these operations,
either through vectorization (e.g., AVX instructions) or hard-
ware implementations (e.g., DSP blocks in FPGAs), can yield
significant speedups in both encryption and decryption. [21]

c) Inversion: Inversion of field elements or matrices
is one of the most computationally expensive operations,
especially when performed over extension fields. Accelerating
inversion, for instance using hardware units or by reducing the
number of inversions required through algorithmic improve-
ments, can contribute substantially to overall performance
enhancements. [19]

B. Acceleration methods

a) Advanced Vector Extensions: AVX is an instruction
set developed by Intel to enhance the performance of vector
computations on CPUs. Introduced with the Sandy Bridge
microarchitecture, AVX enables Single Instruction, Multiple
Data (SIMD) operations on wide registers (256-bit for AVX,

up to 512-bit with AVX-512), making it particularly suitable
for parallel data processing such as finite field multiplications
used in cryptographic algorithms. In our project, AVX was
employed to significantly speed up critical operations such as
key generation, encryption, and decryption. [22]

b) Field-Programmable Gate Arrays: FPGAs are config-
urable hardware components that enable the implementation
of custom digital architectures after manufacturing.

In the context of cryptographic acceleration, FPGAs offer
a significant advantage due to their capacity for massive
parallelization of operations. They are particularly well-suited
for tasks involving intensive arithmetic computations such
as multiplications, additions, and other operations that can
be structured as pipelines or parallel executions. [23] The
critical operations identified are the computation of Rank
Support Recovery (RSR) and the Bloom filter, the latter
relying primarily on hash functions and modulo operations.
These types of computations are highly amenable to FPGA
implementation, as they can be parallelized and optimized in
hardware to reduce latency and increase throughput.

Moreover, the use of a hardware accelerator, whether
FPGA- or ASIC-based, also enables a reduction in energy con-
sumption per operation, which is a key concern in embedded
systems and large-scale infrastructures. [6]

C. Performance

a) Benchmark Configuration: All benchmarks were per-
formed over 1000 iterations on the following system:

• CPU: AMD Ryzen 7 8845HS
• RAM: 32 GB LPDDR5X-6400MT
• Architecture: 64-bit
• Operating System: Debian 12

b) Benchmark Results: We evaluated the performance of
our implementation in terms of CPU cycles (in millions) for
key generation, encryption, and decryption. Results are given
for both the standard (as shown in Table III) and the AVX-
optimized versions (as shown in Table IV).

TABLE III
STANDARD IMPLEMENTATION PERFORMANCE (IN MILLIONS OF CPU

CYCLES)

Security Level Keygen Encrypt Decrypt
128 182.2 16.2 194.9
192 212.7 18.1 227.7
256 254.4 19.5 269.0

TABLE IV
AVX-OPTIMIZED IMPLEMENTATION PERFORMANCE (IN MILLIONS OF

CPU CYCLES)

Security Level Keygen Encrypt Decrypt
128 8.1 7.8 12.8
192 7.3 8.1 12.3
256 7.9 7.7 13.8



c) Comparison: The AVX-optimized version shows a
drastic improvement in performance, especially during key
generation, where the number of CPU cycles was reduced by
more than 20 times for the 128-bit security level. Similar per-
formance gains are observed across encryption and decryption
steps, making the AVX-enhanced implementation highly better
than the original implementation.

D. Our achievements

a) : During our project, we focused on optimizing the
software implementation using AVX (Advanced Vector Ex-
tensions) instructions to significantly accelerate cryptographic
operations on standard CPUs.

b) : Due to time constraints and the complexity of
hardware integration, we did not implement an FPGA-based
acceleration. However, we studied the feasibility of such an
approach and proposed several strategies for future hardware
deployment, as detailed in the next section.

E. FPGA acceleration suggestions

a) Time Cost of Offloading Computations to FPGA:
Offloading cryptographic computations to FPGAs can lead to
significant performance gains and cost savings. For instance, a
study comparing FPGA and GPU accelerations on AWS found
that FPGA implementations performed nearly 14 times the
work of GPU per dollar cost. Additionally, FPGAs consumed
less power, with measurements indicating an average power
consumption of 10W when idle and up to 19W under load,
compared to 250W for GPUs. [24]

b) Designing Specific Units: Designing dedicated hard-
ware units tailored to specific cryptographic operations can
enhance performance. For example, implementing a point
multiplier based on binary fields with reconfigurable key
lengths allowed for effective resource utilization and improved
efficiency in elliptic curve cryptography operations. [25]

c) Parallelization: FPGAs inherently support parallel
processing, making them well-suited for accelerating cryp-
tographic algorithms. By leveraging their parallel structures,
FPGAs can provide substantial acceleration for compute-
intensive tasks, encryption/decryption processes.

d) Other Methods: Additional methods to optimize
FPGA-based cryptographic acceleration include:

• Algorithm Agility: FPGA’s reprogrammable nature en-
ables cryptographic algorithms updates post-deployment,
enhancing flexibility and future-proofing systems.

• Partial Reconfiguration: This technique enables dy-
namic updates to portions of the FPGA without halting
the entire system, insuring efficient resource utilization
and adaptability.

• Hardware-Software Co-Design: Integrating FPGA ac-
celeration with software components can optimize per-
formance and resource allocation, as demonstrated in
homomorphic encryption co-processors. [26]

V. SECURITY CONSIDERATIONS OF THE PRESENTED
SCHEME

A. Limitations of Current Analysis

No formal security proof: Unlike standardized ABE
schemes, our construction lacks a reductionist security proof
(e.g., IND-CPA/CCA under RSD hardness). This means:

• Security relies on heuristic arguments about the compo-
sition of ROLLO-II and Bloom filters

• No theoretical guarantees against adaptive attacks
• Security level claims are provisional pending formal

analysis

B. Composition Risks

The hybrid design combining ROLLO-II with attribute-
based Bloom filters introduces new attack surfaces:

• Attribute-hiding weakness: While ROLLO-II provides
message confidentiality, the Bloom filter leaks policy
information through hash collisions

• Key reuse vulnerability: The same ROLLO-II key pair
is used across all ciphertexts - compromising one attribute
set could weaken others

• Interaction attacks: No formal study of how RSR fail-
ures (Equation 9) interact with Bloom filter false positives

C. Practical Attack Vectors

Even without quantum computers, several threats emerge:
1) Support recovery attacks: An adversary with many

ciphertexts could statistically reconstruct the private sup-
port F .

2) Syndrome manipulation: Carefully crafted ciphertexts
might trigger RSR failures to leak key material.

3) Attribute probing: Observing decryption attempts re-
veals which Bloom filter bits correspond to specific
attributes.

D. Recommendations for Future Security Analysis

To properly evaluate the scheme’s security, we recommend:
1) Formal reduction proofs: Demonstrate equivalence to

RSD or other hard problems.
2) Side-channel analysis: Especially for the FPGA imple-

mentation.
3) Composition theorems: Adapt frameworks like Univer-

sal Composability to analyze the ABE layer.

E. Security Status Summary

TABLE V
SECURITY PROPERTIES OVERVIEW

Component Security Guarantee Major Threats
ROLLO-II core Heuristic (RSD) [17] Support recovery
ABE layer None (novel) Attribute probing
Composition Untested Interaction attacks

• This honest assessment highlights that while the scheme
shows promise, its security depends fundamentally on
future theoretical work



• The experimental results should be interpreted as perfor-
mance benchmarks rather than security validation

VI. CONCLUSION

This work presents a novel attribute-based encryption
scheme based on ROLLO and Low-Rank Parity Check
(LRPC) codes, resulting in a post-quantum construction
that leverages rank metric cryptography for strong security
guarantees. Our implementation uses the RBC library and
employs AVX vectorization to optimize key generation,
encryption, and decryption operations, achieving significant
performance gains on standard CPUs. While these software-
level optimizations yield promising results, the scheme
remains computationally intensive and would benefit from
hardware acceleration—particularly for rank support recovery
and finite field arithmetic—to enable practical deployment in
performance-sensitive environments.

Although our current implementation focuses on
software optimization, we identified critical computational
bottlenecks—such as Rank Support Recovery (RSR) and finite
field arithmetic—that could benefit from FPGA acceleration
in future work. The integration of hardware acceleration
could further enhance performance, making the scheme more
viable for real-world applications in cloud computing and
IoT environments where resource constraints are a concern.

While, several challenges remain. The scheme currently
supports only conjunctive (”AND”) policies, limiting
its expressiveness compared to more advanced ABE
constructions. Additionally, the probabilistic nature of Bloom
filters introduces a small but non-negligible false positive
rate, which must be carefully managed in security-sensitive
deployments. Finally, while rank-based cryptography offers
strong post-quantum security guarantees, a formal security
analysis of our composed scheme (combining ROLLO-II with
ABE) is still needed to validate its resilience against adaptive
attacks.

Future research directions include:

• Extending Policy Support: Implementing threshold-
based or disjunctive policies using Linear Secret Sharing
Schemes (LSSS).

• Hardware Acceleration: Developing FPGA-optimized
modules for RSR and finite field operations to further
reduce latency.

• Security Proofs: Conducting a rigorous security analysis
to establish formal guarantees under chosen-ciphertext
attacks.

Our work contributes to the growing body of research on
practical post-quantum ABE schemes, offering a balance be-
tween security, efficiency, and fine-grained access control. As
quantum computing advances, such constructions will play a
crucial role in securing next-generation distributed systems.
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