
Rapport de BE IOT

Baptiste Rébillard & Aurélien Pouilles

9 janvier 2026

Table des matières
1 Le protocole Unifying 2

2 Capture et rejeu d’une souris 2
2.1 Injection de click . 5

3 Injection de frappe non-chiffré et chiffré sur dongle clavier 5

1

Rapport de BE IOT 2

1 Le protocole Unifying

2 Capture et rejeu d’une souris

Q1

Lorsqu’on scan avec wuni-scan on obtient l’activité de la souris, dont son adresse
(ca:e9:06:ec:a4) :

Q2

Selon la documentation de wsniff, voici les paramètres à utiliser :
— Sniffer du trafic Logitech Unifying : Spécifier le domaine unifying en

fin de commande.
— Fournir l’adresse : Utiliser l’option -f (ou –address).
— Canal :

— Fixe : Option -c suivie du numéro de canal (0-100).
— Automatique : Option -s (ou –scanning) pour balayer les fréquences.

— Format d’affichage : Option –format suivie de raw, hexdump, show ou
repr.

Un exemple d’utilisation se trouve dans la question suivante.

Q3

On écoute le traffic Unifying avec wsniff et on le pipe dans wdump pour l’enregistrer
au format pcap,

Figure 1 – Capture du traffic Unifying

Q4

Avec une première analyse du pcap obtenu avec wanalyze (qu’on pourrais aussi
regarder dans Wireshark) :

https://whad.readthedocs.io/en/latest/cli/unifying/wuni-scan.html
https://whad.readthedocs.io/en/stable/cli/generic/wsniff.html
https://whad.readthedocs.io/en/stable/cli/generic/wsniff.html
https://whad.readthedocs.io/en/latest/cli/generic/wdump.html#wdump-generic-dump-tool
https://whad.readthedocs.io/en/latest/cli/generic/wanalyze.html

Rapport de BE IOT 3

Figure 2 – Affichage du dump de la capture du traffic Unifying

Techniquement, les adresses n’ont pas été distinguées, mais aucun autre appareil
n’émettait durant la capture.

Q5

On tente d’abord de dumper dans un format utilisable (ici json) :

Figure 3 – Dump au format json

On va ensuite analyser avec python la trajectoire de la souris :

1 import subprocess
2 import json
3 import matplotlib.pyplot as plt
4

5 cmd = "wplay --flush unifying.pcap | wanalyze --json"
6 proc = subprocess.Popen(cmd , shell=True , stdout=subprocess.PIPE

, text=True)
7

8 x, y = [0], [0]
9 cur_x , cur_y = 0, 0

10

Rapport de BE IOT 4

11 for line in proc.stdout:
12 try:
13 data = json.loads(line)
14 cur_x += data.get('x', 0)
15 cur_y += data.get('y', 0)
16 x.append(cur_x)
17 y.append(cur_y)
18 except:
19 continue
20

21 plt.plot(x, y)
22 plt.gca().invert_yaxis ()
23 plt.show()
24

Figure 4 – Trajectoire de la souris capturé

Q6

C’est possible avec wuni-mouse aussi :

Figure 5 – Affichage texte de la souris

https://whad.readthedocs.io/en/latest/cli/unifying/wuni-mouse.html

Rapport de BE IOT 5

2.1 Injection de click

Q7

Avec la commande wuni-mouse :

Figure 6 – Injection

Sur l’écran de la victime on remarque bien que la souris fait un click droit "L"(Left)
Maintenant, pour rejouer, on va prendre une capture et l’exécuter, puis la rediriger
vers wuni-mouse qui va simuler la souris (injecter une à une les actions de la souris
précédemment capturées) et les envoyer sur l’UART0 avec l’adresse usurpée :

Figure 7 – Attaque rejeu

3 Injection de frappe non-chiffré et chiffré sur dongle
clavier

Q8

Les dongles Logitech Unifying sont vulnérables à l’injection de paquets clavier non-
chiffrés (BN-0002)[1]. Le dongle accepte des paquets en clair s’ils sont formatés
comme des paquets HID++ (sans passer par AES).
La structure est la suivante :

P = ADDRvictim ∥ 00 ∥ C1 ∥ 00 ∥ HID ∥ 00000000 ∥ CS

— C1 : Octet indiquant un paquet de type clavier.
— HID : Code scan de la touche à injecter (ex : 0x04 pour ’a’).
— CS : Checksum assurant la validité du paquet.

L’adresse de la victime est l’adresse du clavier. On usurpe donc ici l’adresse de
l’émetteur (le clavier).

Q9

On va utiliser wuni-keyboard :

Figure 8 – Injection de frappe non chiffré

On observer le texte injecté sur l’ordinateur de la victime.

Q9bis

L’attaque (BN-0013)[1] exploite la malléabilité du XOR avec le fait que le flux
de chiffrement est statique.

— Le paquet « Key Up » étant composé de zéros en clair, son interception
montre directement le flux de chiffrement (0⊕ flux = flux).

https://whad.readthedocs.io/en/latest/cli/unifying/wuni-mouse.html
https://whad.readthedocs.io/en/latest/cli/unifying/wuni-mouse.html
https://whad.readthedocs.io/en/stable/cli/unifying/wuni-keyboard.html

Rapport de BE IOT 6

— Une fois ce flux connu, il suffit de l’appliquer (via XOR) au code HID de la
touche souhaitée (ex : 0x05 pour ’b’) pour forger un paquet chiffré valide
sans connaître la clé.

Q10

L’argument -r permet d’attendre qu’une frappe légitime soit appuyé pour en ré-
cupérer le compteur AES et pouvoir ensuite injecter des frappes. (On l’a récupéré
avec wuni-keyboard –help car le -r n’existe pas dans la doc compilé pour stable
ni release de l’outil Whad).

Q11

Figure 9 – Injection de Rick Roll avec chiffrement

Q12

Figure 10 – Lecture de l’appairage

Nous avons annoté la capture avec les packets qui font l’appairage (et retiré en
rouge les keep-alive pour faciliter la lecture). On remarque bien :

1. le device_wpid qui correspond au Wireless Product ID du clavier.
2. le dongle_wpid qui correspond au Wireless Product ID du dongle.
3. le device_nonce qui correspond à la valeur aléatoire généré par le clavier
4. le dongle_nonce qui correspond à la valeur aléatoire généré par le dongle.

Rapport de BE IOT 7

Q13 / Q14

On converti les ID trouvé à la question précédente en hexa :
— dongle : (34818)10 = (8802)16
— clavier : (16461)10 = (404d)16

On a completer le R avec les 4 premier octets de l’adresse, suivi du WPID(clavier),
suivi du WPID(dongle), suivi du nonce (clavier) suivi du nonce(dongle). Ensuite
on fait les opérations de dérivation de clé pour générer la clé AES.

1 def derive_logitech_key ():
2 R = [0] * 16
3 R[0] = 0xA8
4 R[1] = 0x41
5 R[2] = 0x9E
6 R[3] = 0xB5
7 R[4] = 0x40
8 R[5] = 0x4D
9 R[6] = 0x88

10 R[7] = 0x02
11 R[8] = 0x87
12 R[9] = 0x56
13 R[10] = 0xEF
14 R[11] = 0x3B
15 R[12] = 0xD1
16 R[13] = 0xAE
17 R[14] = 0x7E
18 R[15] = 0xEA
19

20 K = [0] * 16
21 K[0] = R[7]
22 K[1] = R[1] ^ 0xFF
23 K[2] = R[0]
24 K[3] = R[3]
25 K[4] = R[10]
26 K[5] = R[2] ^ 0xFF
27 K[6] = R[5] ^ 0x55
28 K[7] = R[14]
29 K[8] = R[8]
30 K[9] = R[6]
31 K[10] = R[12] ^ 0xFF
32 K[11] = R[5]
33 K[12] = R[13]
34 K[13] = R[15] ^ 0x55
35 K[14] = R[4]
36 K[15] = R[11]
37

38 key_hex = ''.join(f'{b:02x}' for b in K)
39 return key_hex.upper()
40

41 print(f"AES Key: {derive_logitech_key ()}")
42

Avec le script précédent : on trouve la clé et on vérifie avec wanalyze que notre
script est correct :

https://whad.readthedocs.io/en/latest/cli/generic/wanalyze.html

Rapport de BE IOT 8

Figure 11 – Récupération de la clé AES

Q15

Figure 12 – résultat du wplay

Les packets chiffrés contiennent la chaine Logitech_Encrypted_Keystroke_Payload.
Le premier packet n’est pas chiffré mais le 4e de la capture l’est (les keep-alive
ne le sont pas).

Q16

Avec wplay il est possible d’indiquer la clé, le contenu est alors dechiffré. On ne
remarque rien de spécial mais maintenant decrypted=True :

Q17

Avec la clé trouvé à la question 13, on a la possibilité de déchiffrer le flux, puis on
utilise wanalyze pour decoder proprement les frappes de clavier (en azerty FR) :

https://whad.readthedocs.io/en/stable/cli/generic/wplay.html
https://whad.readthedocs.io/en/latest/cli/generic/wanalyze.html

Rapport de BE IOT 9

Figure 13 – Dechiffrement du flux avec la clé calculé

Q18

non capturé

Références
[1] Marc Newlin. MouseJack, KeySniffer and beyond : Keystroke sniffing and injection

vulnerabilities in 2.4ghz wireless mice and keyboards. 2016.

	Le protocole Unifying
	Capture et rejeu d'une souris
	Injection de click

	Injection de frappe non-chiffré et chiffré sur dongle clavier

