Vulnérabilités applicatives
TLS_SEC TP1

Vulnérabilités Applicatives - TP1 :

return into libc, débordements dans le tas et dans
BSS

Objectifs : ce premier TP est destiné a mettre en évidence certaines
classes de vulnérabilités applicatives vues en cours : les débordements dans
la pile de type ”return into libc”, les attaques de type ROP, les débordements
dans le tas et dans BSS. Nous les illustrerons au travers de divers exemples
tirés du cours.

1 Return into libc

Nous allons dans cette partie étudier comment un débordement de tam-
pon dans la pile peut étre exploité méme si la pile est non exécutable

Lorsque la pile est non exécutable, il devient impossible de copier dans la
pile le code & exécuter. Il faut donc aller le chercher ailleurs! La technique du
return into libc permet de faire en sorte d’exécuter du code inclus dans
la 1ibc qui en principe est linkée avec tous les programmes exécutables.
Dans ’exemple que nous allons étudier ici, nous allons essayer d’exécuter
un shell, ce qui est en général le but recherché par les attaquants, mais nous
essaierons aussi d’autres codes exécutables.

1.1 Le programme de test

Soit le programme return.c :

#include <stdio.h>
#include <string.h>

void copie(char * s)



TLS_SEC TP1

{
char ch[8]="BBBBBBB";

strcpy(ch,s);
}

int main(int argc, char * argv[])
{

copie(argv[1]);

return(0) ;

}

Nous vous proposons d’exploiter cette vulnérabilité sur une architecture
32 bits, nous allons donc compiler le programme pour ce type d’architecture :

gcc -mpreferred-stack-boundary=2 -fno-stack-protector -m32
-fno-pie -no-pie return.c -o return

Et nous désactivons ALSR (randomisation de ’espace d’adressage) :
bash# echo 0 > /proc/sys/kernel/randomize_va_space

(nécessite les droits root)
bash# setarch x86_64 -R /bin/bash

(sinon)

Nous désactivons donc ['utilisation des canaries, de facon a pouvoir
écrire dans la pile mais nous ne désactivons pas la protection qui interdit
I’exécution de code dans la pile.

1.2 A la recherche de I’adresse de system

La fonction que nous allons exécuter lorsque nous aurons réalisé le débordement
de tampon est la fonction system. Cette fonction, incluse dans la libc
a la bonne idée de pouvoir exécuter tout binaire qu’on lui donne en pa-
rametres. Ainsi system("/bin/bash") provoque le lancement d’un proces-
sus qui exécute le binaire /bin/bash.

Le premier probléeme que I’on doit résoudre est trouver 'adresse de cette
fonction. Pour cela, on peut utiliser un debugger. La commande a utiliser
sous gdb est simplement la commande : p system.



TLS_SEC TP1

1. Compilez le programme source proposé avec les options proposées
également.

2. A T'aide de gdb, déterminez l'adresse de la fonction system telle
qu’elle est mappée dans votre programme exécutable.

1.3 A la recherche de la chaine de caractéres /bin/bash dans
la pile

Comme nous 'avons vu en cours, le buffer que nous allons écraser devra
contenir ’adresse de la fonction system mais aussi I’adresse de la chaine de
caracteres /bin/bash (ou tout autre shell du méme genre) quelques octets
plus loin.

Pour déterminer I’adresse d’une telle chaine dans I’espace d’adressage du
processus, il y a deux solutions. Soit, la chercher dans les variables d’envi-
ronnement (la variable SHELL contient une telle chaine de caractéres), soit
la chercher dans la 1ibc également.

Nous allons tout d’abord commencer par la premiere solution. Pour cela,
on peut tenter d’estimer la position de cette variable dans le programme
vulnérable, si on suppose qu’ASLR est desactivé. Pour cela, il suffit de créer
un programme C avec le code suivant :

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char * argv([])
{
printf ("%p\n",getenv ("SHELL"));
return(0) ;

3

et de 'exécuter. Si ce programme est exécuté dans le méme dossier que
le programme vulnérable et que la taille du nom du fichier binaire est la
méme que celle du binaire vulnérable, I’adresse mémoire affichée par ce pro-
gramme vous donne ’emplacemment mémoire de la variable SHELL dans le
programme vulnérable.

1. Exécuter le programme indiqué ci-dessus.

2. En déduire ’adresse de la chaine /bin/bash dans les variables d’en-
vironnement.



TLS_SEC TP1

1.4 A la recherche de la chaine de caractéres /bin/sh dans la
libc

La libc contient la chaine de caracteres /bin/sh. Pour déterminer ’off-
set de cette chalne dans notre programme binaire, deux simples commandes
vont nous suffir. La commande 1dd nous permet de connaitre ’adresse dans
notre binaire ou est chargée la 1libc. La simple commande 1dd a.out fou-
nit ce résultat. Il faut ensuite déterminer I'offest de la chaine /bin/sh dans
la libc. Pour cela, il suffit d’utiliser la commande strings avec les bonnes
options. Par exemple :

bash$ strings -t x /1ib32/libc.so.6 | grep /bin/sh

Pour obtenir 'adresse qui nous intéresse, il suffira de sommer les deux
adresses trouvées.

1. Utilisez la commande 1dd pour trouver l'offest de la libc dans votre
programme binaire.

2. Utilisez la commande strings pour trouver l'offest de /bin/sh dans
la 1ibc.

3. En déduire ’adresse de la chaine /bin/sh dans votre programme
binaire.

Une autre solution est possible en utilisant gdb, en démarrant ’exécution
de votre binaire apres avoir positionné un breakpoint quelconque. Utilisez en-
suite les commandes info files et find adr_debut,adr_fin,"/bin/sh".
Les 2 adresses nécessaires a la seconde commande sont en fait les adresses de
début et fin de la section .rodata de la 1libc.so.6 (c’est dans cette section
que se trouve la chaine /bin/sh). La premiére commande info files vous
permet de les déterminer.

1.5 L’exploitation

Il suffit maintenant de provoquer un débordement du buffer ch de la
fonction copie de fagon a écraser 'adresse de retour de cette fonction et a
insérer 8 octets plus loin dans la pile ’adresse de la chaine /bin/sh, ainsi
que nous ’avons vu en cours. Nous utilisons ici la seconde méthode présentée
ci-dessus, a I’aide de ’adresse de /bin/sh dans la libc.

Le langage Perl va nous étre d’un grand secours sur ce point. Pour
générer une chaine de caracteres composée de différents motifs et adresses,
il suffit d’utiliser la commande suivante :

perl -e ’print "A" x 16 . "\xaa\xbb\xcc\xdd"’



TLS_SEC TP1

Dans cet exemple, nous fabriquons une chaine de caracteres constitutée
de 16 caracteres ’A’ puis de l'adresse Oxddccbbaa (attention a la notation
inversée)

1. A l'aide de la commande ci-dessus, constituez la chaine de caracteres
permettant de faire déborder le buffer ch de fagon a provoquer la
déroutement de la fonction copie vers la fonction system avec la
chaine /bin/sh en parametres.

2. Exécutez votre programe exécutable en lui passant en parametre cette
chaine.

3. Testez le fontionnement.

2 Attaques de type ROP

Nous allons a présent utiliser un autre programme C vulnérable que nous
allons exploiter en utilisant une attaque de type ROP. Nous allons donc pour
cela devoir fabriquer une ROPchain.

Soit le programme C rop.c :

#include <stdio.h>

int main()

{
char ch[8];
FILE * fd;
int size;
fd=fopen("./data","r");
printf ("combien ? ");
scanf ("%d" ,&size) ;
fgets(ch,size,fd);
return(0) ;

De méme que pour l'exercice précédent, nous allons compiler le pro-
gramme en désactivant les canaries et en désactivant la randomization de
I’espace d’adressage. Cependant pour cette exploitation, nous utilisons une
architecture 64 bits. Le principe des attaques ROP étant de pouvoir fabri-
quer une ROPchain avec des gadgets trouvés dans les sections de code du
binaire, nous allons également augmenter nos chances de trouver ces gadgets
en compilant statiquement notre programme :



TLS_SEC TP1

gcc -Wall -g -fno-stack-protector -mpreferred-stack-boundary=4
-fno-pie rop.c -o rop -static

Nous allons utiliser la méthode vue en cours nous permettant de chercher
des gadgets réalisant execve ("/bin/sh" ,NULL,NULL). L’utilitaire ROPgadget
va nous aider dans cette tache.

1. A laide de l'utilitaire ROPgadget et 'option —-ropchain générez la
Ropchain permet d’exécuter execve("/bin/sh" ,NULL,NULL).

2. Modifiez légerement cette ROPchain pour y ajouter les caracteres
permettant d’écraser ’adresse de retour, puis générez le fichier data
adéquat pour l'attaque.

3. Exécutez le programme vulnérable en lui fournissant la taille adéquate.

Pour les plus courageux : vous pouvez faire la ROPchain a la main sans
utiliser 'option de ROPgadget.

3 Débordement dans le tas

3.1 Les meta données du tas

Nous allons dans cette partie étudier la structure des données allouées
dans le tas et les parties que ’on peut corrompre ainsi que leur conséquence.
Nous n’allons donc pas exécuter d’exploit mais plutét étudier comment est
organisé le tas.

Soit le programme suivant :

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define BUFSIZE 16

int main(int argc, char * argv[])
{
char *bufl
char *buf2

(char *)malloc(BUFSIZE);
(char *)malloc(BUFSIZE);

memset (bufi, ’A’, BUFSIZE-1);
buf1 [BUFSIZE-1] ’\07;
memset (buf2, ’B’, BUFSIZE-1);
buf2[BUFSIZE-1] ’\0”;



TLS_SEC TP1

strcpy(bufl,argv(1]);

free(bufl);
free(buf2);

return O;

1. Modifiez ce programme C de facon a faire apparaitre la structure
des chunks en mémoire dynamique. En particulier, vous afficherez la
“vraie” taille allouée pour bufil et buf?2.

2. Provoquez maintenant un débordement de bufl de facon a écraser
la zone mémoire ou est stockée la “vraie” taille de buf2 (on ne cher-
chera donc pas a écraser buf2 lui méme). Quel est le message d’er-
reur obtenu a l'exécution ? Que signifie-t-il selon vous ? Commentez
Iinstruction qui provoque ce message? Commentez tour a tour les
instructions free et constatez la différence des messages d’erreurs.

3. Pour finir, provoquez ’écrasement de buf?2.

3.2 Use after free

Les attaques de type user after free sont des attaques qui exploitent des
pointeurs qui pointent sur une zone qui a été libérée dans le tas puis réalloué
al’aide d’un autre pointeur (il y a donc potentiellement partage d’'une méme
zone mémoire & ’aide de 2 pointeurs). Nous vous proposons un exemple de
programme vulnérable extrait d'un CTF. Ce programme est trop long pour
étre inséré dans le sujet. Il est présent dans le code source tpl_avance.c
que vous utilisez pour ce TP. Compilez ce programme, réperez dans le code
le probleme induit par le "use after free” et exploitez cette faiblesse.

3.3 Facultatif : Forged chunk

Il est possible de profiter de la structure du tas et des meta données
(notamment des pointeurs) pour détourner l'exécution des fonctions malloc
et free. Nous allons dans cet exercice coder un programme qui utilise la
technique du chunk forgé dans la pile et du détournement de la fonction
malloc qui va renvoyer une adresse dans la pile suit a I’écrasement de meta
données d’un chunk légitimement alloué puis libéré. Nous devez donc utiliser
la méthode vu en cours et écrire un petit programme qui la met en pratique.



TLS_SEC TP1

4 Débordement dans BSS

Nous allons, dans cette partie, étudier comment un débordement dans
certaines sections de mémoire telles que la section bss peut étre exploitée.
Nous allons pour cela utiliser ’exemple de programme vulnérable que nous
avons vu en cours. Cette section ne possédant aucun meta-data particuliere,
la possibilité d’exploitation vient donc notamment de 1'utilisation de poin-
teurs qui se situent dans cette zone de données et qu’on pourrait modifier
suite a un débordement de tampon situé dans la méme section. Ici on va
supposer qu’un pointeur de fonction est situé dans cette section.

4.1 Le programme vulnérable

Soit le programme suivant :

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

#define ERROR -1
#define BUFSIZE 8

struct data {
char buf [BUFSIZE];
int (xfuncptr) (const char *);

s
int goodfunc(const char *str);

int main(int argc, char *xargv)
{

static struct data p;

p.funcptr = (int (%) (const char *str))goodfunc;
printf ("Avant overflow: funcptr pointe sur %p\n", p.funcptr);

memset (p.buf, 0, sizeof(p.buf));
strcpy(p.buf, argv[1]);
printf ("Apres overflow: funcptr pointe sur %p\n", p.funcptr);



TLS_SEC TP1

(void) (p.funcptr) (argv[2]);

return O;

}

int goodfunc(const char *str)

{
printf ("Goodfunc, parametre : %s\n", str);
return O;

}

4.2 Examen de la section bss

La structure static p et funcptr se trouve dans la section bss ainsi
que nous permettent de le vérifier les commandes nm et objdump.

La commande nm permet notamment de lister les différentes sections
d’un programme binaire et d’en donner I'adresse. Ainsi nm a.out | grep
bss nous permet d’obtenir 'adresse du début de la section bss :

nm a.out | grep bss

On peut également chercher ’adresse de la variable p de la méme fagon.

1. ATaide des deux commandes ci-dessus, déterminez les adresses mémoire
de la section bss et de la variable p.

2. Selon vous, quelle est la taille nécessaire de argv[1] pour provoquer
I’écrasement de funcptr lors de I'appel de la fonction strcpy. Vous
pouvez le vérifier a I'aide de gdb.

4.3 L’exploitation

L’exploitation consiste donc & détourner 1'utilisation du pointeur de fonc-
tion de fagon a le faire pointer sur une fonction choisie par 'attaquant, par
exemple, ici encore, la fonction system. Il suffira ensuite de fournir en second
parametre (argv[2]) la chaine de caractéres sh par exemple pour obtenir
un shell.

1. Déterminez I'adresse a laquelle la fonction system est mappée dans
le programme binaire.

2. En déduire les deux arguments a passer au programme pour obtenir
un shell.



TLS_SEC TP1

5 Débordement pour modifier la GOT

Nous allons dans cette derniere partie utiliser I’exemple vu en cours pour
profiter d’'un débordement dans la pile afin de détourner I'exécution d’une
fonction standard de la 1ibc.

5.1 Le programme vulnérable

Le programme got.c est le suivant. Il utilise 2 copies de chaines de
caracteres passées en parametres. La seconde copie se fait par I'intermédiaire
d’un pointeur que nous allons écraser.

#include <string.h>
#include <stdio.h>
#include <stdlib.h>

struct truc

{
char buf1[16];
char buf2[16];
char * ptr;

};

int main(int argc, char * argv[])
{

struct truc p;

p.ptr=0;
printf("bufl : %p - buf2 : %p - ptr : Yp\n",p.bufl,p.buf2,&p.ptr);
if (argc < 3) exit(-1);

printf ("%p\n",p.ptr);
strcpy(p.bufl,argv[1]);
printf ("%p\n",p.ptr);
strcpy(p.ptr,argv[2]);
printf ("%s\n",p.buf2);
return(0) ;

Compilez ce programme :

gcc -z execstack -no-pie got.c -o got

10



TLS_SEC TP1

5.2 Le principe de ’exploitation

Le but est de profiter du premier appel a strcpy pour provoquer un
débordement de bufl et ainsi écraser buf2 mais aussi ptr. Ainsi, nous
pourrons maitriser I’adresse de destination du second strcpy. Comme nous
maitrisons aussi la source du second strcpy (qui est argv[2] ), nous pouvons
écrire ce que nous voulons la ou nous le voulons en quelque sorte.

5.3 Premier strcpy

Il est tout d’abord nécessaire de vérifier que le débordement de bufil
nous permet bien d’écraser ptr. Ensuite, il faut calculer le nombre d’octets
séparant bufl de ptr de fagon a pouvoir I’écraser. Il faut ensuite déterminer
ladresse de la fonction puts dans la GOT. Enfin, il faut fabriquer argv[1]
de la facon suivante :

NNNNNNNNNSSSSSSSSSSSS [adr_got]

ou N est l'instruction NOP, SSSSSS représente le shellcode et adr_got
I’adresse de puts dans la GOT. Il faut calculer le tout pour que cette adresse
écrase bien la valeur de ptr.

1. Compilez le programme précédent.

2. Vérifiez a 'aide d’un debugger ou par simple affichage que buf1l
précede bien ptr en mémoire.

3. Il est également important de calculer la longueur de la chaine argv [1]
que nous devrons utiliser pour écraser ptr. Calculez cette distance.

4. 11 reste a présent a déterminer I’adresse dans la GOT de la fonction
puts (il faut en fait utiliser puts et non printf du fait que nous
affichons seulement une chaine de caracteres, dans ce cas, c’est en
fait puts qui est utilisé). Pour cela, utilisez la commande objdump
-R.

5.4 Second strcpy et exploitation

Le second strcpy nous permet de modifier la GOT (plus précisément,
I'indirection correspondant & puts) de fagon a modifier cette indirection par
I’adresse de notre shellcode.

1. Faites en sorte que votre programme affiche I’adresse de buf1 (c’est
cette adresse qui nous servira a écraser la GOT).

11



TLS_SEC TP1

2. Exécutez le programme en lui passant en premier parametre la chaine
calcuée dans la section précédente et en second une chaine compre-
nant l'adresse de bufl dans BSS (le shellcode vous sera fourni par
Penseignant).

3. Vérifiez que vous arrivez bien a exécuter un shell.

12



