
TLS SEC
Vulnérabilités applicatives

TP1

Vulnérabilités Applicatives - TP1 :

return into libc, débordements dans le tas et dans

BSS

Objectifs : ce premier TP est destiné à mettre en évidence certaines
classes de vulnérabilités applicatives vues en cours : les débordements dans
la pile de type ”return into libc”, les attaques de type ROP, les débordements
dans le tas et dans BSS. Nous les illustrerons au travers de divers exemples
tirés du cours.

1 Return into libc

Nous allons dans cette partie étudier comment un débordement de tam-
pon dans la pile peut être exploité même si la pile est non exécutable

Lorsque la pile est non exécutable, il devient impossible de copier dans la
pile le code à exécuter. Il faut donc aller le chercher ailleurs ! La technique du
return into libc permet de faire en sorte d’exécuter du code inclus dans
la libc qui en principe est linkée avec tous les programmes exécutables.
Dans l’exemple que nous allons étudier ici, nous allons essayer d’exécuter
un shell, ce qui est en général le but recherché par les attaquants, mais nous
essaierons aussi d’autres codes exécutables.

1.1 Le programme de test

Soit le programme return.c :

#include <stdio.h>

#include <string.h>

void copie(char * s)

1

TLS SEC TP1

{

char ch[8]="BBBBBBB";

strcpy(ch,s);

}

int main(int argc, char * argv[])

{

copie(argv[1]);

return(0);

}

Nous vous proposons d’exploiter cette vulnérabilité sur une architecture
32 bits, nous allons donc compiler le programme pour ce type d’architecture :

gcc -mpreferred-stack-boundary=2 -fno-stack-protector -m32

-fno-pie -no-pie return.c -o return

Et nous désactivons ALSR (randomisation de l’espace d’adressage) :

bash# echo 0 > /proc/sys/kernel/randomize_va_space

(nécessite les droits root)

bash# setarch x86_64 -R /bin/bash

(sinon)
Nous désactivons donc l’utilisation des canaries, de faco̧n à pouvoir

écrire dans la pile mais nous ne désactivons pas la protection qui interdit
l’exécution de code dans la pile.

1.2 A la recherche de l’adresse de system

La fonction que nous allons exécuter lorsque nous aurons réalisé le débordement
de tampon est la fonction system. Cette fonction, incluse dans la libc

a la bonne idée de pouvoir exécuter tout binaire qu’on lui donne en pa-
ramètres. Ainsi system("/bin/bash") provoque le lancement d’un proces-
sus qui exécute le binaire /bin/bash.

Le premier problème que l’on doit résoudre est trouver l’adresse de cette
fonction. Pour cela, on peut utiliser un debugger. La commande à utiliser
sous gdb est simplement la commande : p system.

2

TLS SEC TP1

1. Compilez le programme source proposé avec les options proposées
également.

2. A l’aide de gdb, déterminez l’adresse de la fonction system telle
qu’elle est mappée dans votre programme exécutable.

1.3 A la recherche de la châıne de caractères /bin/bash dans
la pile

Comme nous l’avons vu en cours, le buffer que nous allons écraser devra
contenir l’adresse de la fonction system mais aussi l’adresse de la châıne de
caractères /bin/bash (ou tout autre shell du même genre) quelques octets
plus loin.

Pour déterminer l’adresse d’une telle châıne dans l’espace d’adressage du
processus, il y a deux solutions. Soit, la chercher dans les variables d’envi-
ronnement (la variable SHELL contient une telle châıne de caractères), soit
la chercher dans la libc également.

Nous allons tout d’abord commencer par la première solution. Pour cela,
on peut tenter d’estimer la position de cette variable dans le programme
vulnérable, si on suppose qu’ASLR est desactivé. Pour cela, il suffit de créer
un programme C avec le code suivant :

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char * argv[])

{

printf("%p\n",getenv("SHELL"));

return(0);

}

et de l’exécuter. Si ce programme est exécuté dans le même dossier que
le programme vulnérable et que la taille du nom du fichier binaire est la
même que celle du binaire vulnérable, l’adresse mémoire affichée par ce pro-
gramme vous donne l’emplacemment mémoire de la variable SHELL dans le
programme vulnérable.

1. Exécuter le programme indiqué ci-dessus.

2. En déduire l’adresse de la châıne /bin/bash dans les variables d’en-
vironnement.

3

TLS SEC TP1

1.4 A la recherche de la châıne de caractères /bin/sh dans la
libc

La libc contient la châıne de caractères /bin/sh. Pour déterminer l’off-
set de cette châıne dans notre programme binaire, deux simples commandes
vont nous suffir. La commande ldd nous permet de connâıtre l’adresse dans
notre binaire où est chargée la libc. La simple commande ldd a.out fou-
nit ce résultat. Il faut ensuite déterminer l’offest de la châıne /bin/sh dans
la libc. Pour cela, il suffit d’utiliser la commande strings avec les bonnes
options. Par exemple :

bash$ strings -t x /lib32/libc.so.6 | grep /bin/sh

Pour obtenir l’adresse qui nous intéresse, il suffira de sommer les deux
adresses trouvées.

1. Utilisez la commande ldd pour trouver l’offest de la libc dans votre
programme binaire.

2. Utilisez la commande strings pour trouver l’offest de /bin/sh dans
la libc.

3. En déduire l’adresse de la châıne /bin/sh dans votre programme
binaire.

Une autre solution est possible en utilisant gdb, en démarrant l’exécution
de votre binaire après avoir positionné un breakpoint quelconque. Utilisez en-
suite les commandes info files et find adr debut,adr fin,"/bin/sh".
Les 2 adresses nécessaires à la seconde commande sont en fait les adresses de
début et fin de la section .rodata de la libc.so.6 (c’est dans cette section
que se trouve la châıne /bin/sh). La première commande info files vous
permet de les déterminer.

1.5 L’exploitation

Il suffit maintenant de provoquer un débordement du buffer ch de la
fonction copie de façon à écraser l’adresse de retour de cette fonction et à
insérer 8 octets plus loin dans la pile l’adresse de la châıne /bin/sh, ainsi
que nous l’avons vu en cours. Nous utilisons ici la seconde méthode présentée
ci-dessus, à l’aide de l’adresse de /bin/sh dans la libc.

Le langage Perl va nous être d’un grand secours sur ce point. Pour
générer une châıne de caractères composée de différents motifs et adresses,
il suffit d’utiliser la commande suivante :

perl -e ’print "A" x 16 . "\xaa\xbb\xcc\xdd"’

4

TLS SEC TP1

Dans cet exemple, nous fabriquons une châıne de caractères constitutée
de 16 caractères ’A’ puis de l’adresse 0xddccbbaa (attention à la notation
inversée)

1. A l’aide de la commande ci-dessus, constituez la châıne de caractères
permettant de faire déborder le buffer ch de façon à provoquer la
déroutement de la fonction copie vers la fonction system avec la
châıne /bin/sh en paramètres.

2. Exécutez votre programe exécutable en lui passant en paramètre cette
châıne.

3. Testez le fontionnement.

2 Attaques de type ROP

Nous allons à présent utiliser un autre programme C vulnérable que nous
allons exploiter en utilisant une attaque de type ROP. Nous allons donc pour
cela devoir fabriquer une ROPchain.

Soit le programme C rop.c :

#include <stdio.h>

int main()

{

char ch[8];

FILE * fd;

int size;

fd=fopen("./data","r");

printf("combien ? ");

scanf("%d",&size);

fgets(ch,size,fd);

return(0);

}

De même que pour l’exercice précédent, nous allons compiler le pro-
gramme en désactivant les canaries et en désactivant la randomization de
l’espace d’adressage. Cependant pour cette exploitation, nous utilisons une
architecture 64 bits. Le principe des attaques ROP étant de pouvoir fabri-
quer une ROPchain avec des gadgets trouvés dans les sections de code du
binaire, nous allons également augmenter nos chances de trouver ces gadgets
en compilant statiquement notre programme :

5

TLS SEC TP1

gcc -Wall -g -fno-stack-protector -mpreferred-stack-boundary=4

-fno-pie rop.c -o rop -static

Nous allons utiliser la méthode vue en cours nous permettant de chercher
des gadgets réalisant execve("/bin/sh",NULL,NULL). L’utilitaire ROPgadget
va nous aider dans cette tâche.

1. A l’aide de l’utilitaire ROPgadget et l’option --ropchain générez la
Ropchain permet d’exécuter execve("/bin/sh",NULL,NULL).

2. Modifiez légèrement cette ROPchain pour y ajouter les caractères
permettant d’écraser l’adresse de retour, puis générez le fichier data
adéquat pour l’attaque.

3. Exécutez le programme vulnérable en lui fournissant la taille adéquate.

Pour les plus courageux : vous pouvez faire la ROPchain à la main sans
utiliser l’option de ROPgadget.

3 Débordement dans le tas

3.1 Les meta données du tas

Nous allons dans cette partie étudier la structure des données allouées
dans le tas et les parties que l’on peut corrompre ainsi que leur conséquence.
Nous n’allons donc pas exécuter d’exploit mais plutôt étudier comment est
organisé le tas.

Soit le programme suivant :

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define BUFSIZE 16

int main(int argc, char * argv[])

{

char *buf1 = (char *)malloc(BUFSIZE);

char *buf2 = (char *)malloc(BUFSIZE);

memset(buf1, ’A’, BUFSIZE-1);

buf1[BUFSIZE-1] = ’\0’;

memset(buf2, ’B’, BUFSIZE-1);

buf2[BUFSIZE-1] = ’\0’;

6

TLS SEC TP1

strcpy(buf1,argv[1]);

free(buf1);

free(buf2);

return 0;

}

1. Modifiez ce programme C de façon à faire apparâıtre la structure
des chunks en mémoire dynamique. En particulier, vous afficherez la
“vraie” taille allouée pour buf1 et buf2.

2. Provoquez maintenant un débordement de buf1 de façon à écraser
la zone mémoire ou est stockée la “vraie” taille de buf2 (on ne cher-
chera donc pas à écraser buf2 lui même). Quel est le message d’er-
reur obtenu à l’exécution ? Que signifie-t-il selon vous ? Commentez
l’instruction qui provoque ce message ? Commentez tour à tour les
instructions free et constatez la différence des messages d’erreurs.

3. Pour finir, provoquez l’écrasement de buf2.

3.2 Use after free

Les attaques de type user after free sont des attaques qui exploitent des
pointeurs qui pointent sur une zone qui a été libérée dans le tas puis réalloué
à l’aide d’un autre pointeur (il y a donc potentiellement partage d’une même
zone mémoire à l’aide de 2 pointeurs). Nous vous proposons un exemple de
programme vulnérable extrait d’un CTF. Ce programme est trop long pour
être inséré dans le sujet. Il est présent dans le code source tp1 avance.c

que vous utilisez pour ce TP. Compilez ce programme, réperez dans le code
le problème induit par le ”use after free” et exploitez cette faiblesse.

3.3 Facultatif : Forged chunk

Il est possible de profiter de la structure du tas et des meta données
(notamment des pointeurs) pour détourner l’exécution des fonctions malloc
et free. Nous allons dans cet exercice coder un programme qui utilise la
technique du chunk forgé dans la pile et du détournement de la fonction
malloc qui va renvoyer une adresse dans la pile suit à l’écrasement de meta
données d’un chunk légitimement alloué puis libéré. Nous devez donc utiliser
la méthode vu en cours et écrire un petit programme qui la met en pratique.

7

TLS SEC TP1

4 Débordement dans BSS

Nous allons, dans cette partie, étudier comment un débordement dans
certaines sections de mémoire telles que la section bss peut être exploitée.
Nous allons pour cela utiliser l’exemple de programme vulnérable que nous
avons vu en cours. Cette section ne possédant aucun meta-data particulière,
la possibilité d’exploitation vient donc notamment de l’utilisation de poin-
teurs qui se situent dans cette zone de données et qu’on pourrait modifier
suite à un débordement de tampon situé dans la même section. Ici on va
supposer qu’un pointeur de fonction est situé dans cette section.

4.1 Le programme vulnérable

Soit le programme suivant :

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#define ERROR -1

#define BUFSIZE 8

struct data {

char buf[BUFSIZE];

int (*funcptr)(const char *);

};

int goodfunc(const char *str);

int main(int argc, char **argv)

{

static struct data p;

p.funcptr = (int (*)(const char *str))goodfunc;

printf("Avant overflow: funcptr pointe sur %p\n", p.funcptr);

memset(p.buf, 0, sizeof(p.buf));

strcpy(p.buf, argv[1]);

printf("Apres overflow: funcptr pointe sur %p\n", p.funcptr);

8

TLS SEC TP1

(void)(p.funcptr)(argv[2]);

return 0;

}

int goodfunc(const char *str)

{

printf("Goodfunc, parametre : %s\n", str);

return 0;

}

4.2 Examen de la section bss

La structure static p et funcptr se trouve dans la section bss ainsi
que nous permettent de le vérifier les commandes nm et objdump.

La commande nm permet notamment de lister les différentes sections
d’un programme binaire et d’en donner l’adresse. Ainsi nm a.out | grep

bss nous permet d’obtenir l’adresse du début de la section bss :

nm a.out | grep bss

On peut également chercher l’adresse de la variable p de la même façon.

1. A l’aide des deux commandes ci-dessus, déterminez les adresses mémoire
de la section bss et de la variable p.

2. Selon vous, quelle est la taille nécessaire de argv[1] pour provoquer
l’écrasement de funcptr lors de l’appel de la fonction strcpy. Vous
pouvez le vérifier à l’aide de gdb.

4.3 L’exploitation

L’exploitation consiste donc à détourner l’utilisation du pointeur de fonc-
tion de façon à le faire pointer sur une fonction choisie par l’attaquant, par
exemple, ici encore, la fonction system. Il suffira ensuite de fournir en second
paramètre (argv[2]) la châıne de caractères sh par exemple pour obtenir
un shell.

1. Déterminez l’adresse à laquelle la fonction system est mappée dans
le programme binaire.

2. En déduire les deux arguments à passer au programme pour obtenir
un shell.

9

TLS SEC TP1

5 Débordement pour modifier la GOT

Nous allons dans cette dernière partie utiliser l’exemple vu en cours pour
profiter d’un débordement dans la pile afin de détourner l’exécution d’une
fonction standard de la libc.

5.1 Le programme vulnérable

Le programme got.c est le suivant. Il utilise 2 copies de châınes de
caractères passées en paramètres. La seconde copie se fait par l’intermédiaire
d’un pointeur que nous allons écraser.

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

struct truc

{

char buf1[16];

char buf2[16];

char * ptr;

};

int main(int argc, char * argv[])

{

struct truc p;

p.ptr=0;

printf("buf1 : %p - buf2 : %p - ptr : %p\n",p.buf1,p.buf2,&p.ptr);

if (argc < 3) exit(-1);

printf("%p\n",p.ptr);

strcpy(p.buf1,argv[1]);

printf("%p\n",p.ptr);

strcpy(p.ptr,argv[2]);

printf("%s\n",p.buf2);

return(0);

}

Compilez ce programme :

gcc -z execstack -no-pie got.c -o got

10

TLS SEC TP1

5.2 Le principe de l’exploitation

Le but est de profiter du premier appel à strcpy pour provoquer un
débordement de buf1 et ainsi écraser buf2 mais aussi ptr. Ainsi, nous
pourrons mâıtriser l’adresse de destination du second strcpy. Comme nous
mâıtrisons aussi la source du second strcpy (qui est argv[2]), nous pouvons
écrire ce que nous voulons là où nous le voulons en quelque sorte.

5.3 Premier strcpy

Il est tout d’abord nécessaire de vérifier que le débordement de buf1

nous permet bien d’écraser ptr. Ensuite, il faut calculer le nombre d’octets
séparant buf1 de ptr de façon à pouvoir l’écraser. Il faut ensuite déterminer
l’adresse de la fonction puts dans la GOT. Enfin, il faut fabriquer argv[1]

de la façon suivante :

NNNNNNNNNSSSSSSSSSSSS[adr_got]

où N est l’instruction NOP, SSSSSS représente le shellcode et adr got

l’adresse de puts dans la GOT. Il faut calculer le tout pour que cette adresse
écrase bien la valeur de ptr.

1. Compilez le programme précédent.

2. Vérifiez à l’aide d’un debugger ou par simple affichage que buf1

précède bien ptr en mémoire.

3. Il est également important de calculer la longueur de la châıne argv[1]
que nous devrons utiliser pour écraser ptr. Calculez cette distance.

4. Il reste à présent à déterminer l’adresse dans la GOT de la fonction
puts (il faut en fait utiliser puts et non printf du fait que nous
affichons seulement une châıne de caractères, dans ce cas, c’est en
fait puts qui est utilisé). Pour cela, utilisez la commande objdump

-R.

5.4 Second strcpy et exploitation

Le second strcpy nous permet de modifier la GOT (plus précisément,
l’indirection correspondant à puts) de façon à modifier cette indirection par
l’adresse de notre shellcode.

1. Faites en sorte que votre programme affiche l’adresse de buf1 (c’est
cette adresse qui nous servira à écraser la GOT).

11

TLS SEC TP1

2. Exécutez le programme en lui passant en premier paramètre la châıne
calcuée dans la section précédente et en second une châıne compre-
nant l’adresse de buf1 dans BSS (le shellcode vous sera fourni par
l’enseignant).

3. Vérifiez que vous arrivez bien à exécuter un shell.

12

