
TLS SEC
Vulnérabilités applicatives

TP2

Vulnérabilités Applicatives - TP2 : châınes de

format, integer overflow, programmes SUID

Objectifs : ce second TP est destiné à mettre en évidence certaines classes
de vulnérabilités applicatives vues en cours : les châınes de format et les
programmes SUID. Nous les illustrerons au travers de divers exemples tirés
du cours.

1 Châınes de format

Nous allons dans cette première section étudier quelques exemples simples
mettant en évidence les vulnérabilités liées à la mauvaise utilisation des
châınes de format dans les fonction d’affichage ou de lecture telle printf,

scanf, etc.

1.1 Premier exemple

Dans ce premier exemple, nous allons montrer comment l’exploitation
d’une vulnérabilité de type châıne de format peut permettre de dévoiler des
informations internes d’un programme, tout simplement en examinant le
contenu de sa pile.

Soit le programme vulnérable suivant :

#include <stdio.h>

#include <string.h>

int main()

{

char * secret = "secretsympa";

static char entree[20] = {0};

1

TLS SEC TP2

printf("Entrez votre nom: ");

scanf("%s",entree);

printf("Bonjour ");

printf(entree);

printf("\n");

printf("Entrez votre password : ");

scanf("%s",entree);

if (strcmp(entree,secret)==0) {

printf("OK\n");

}

else {

printf("NOK\n");

}

return 0;

}

Ce programme est vulnérable puisque la fonction printf(entree) est
utilisé sans châıne de format. Ainsi, si le paramètre entree est bien choisi, il
est possible d’accéder à des informations contenues dans la pile. Il suffit pour
cela d’utiliser des instructions de formattage pour entree, ainsi que nous
l’avons vu en cours. En particulier, la valeur %p permet d’afficher la mémoire
en hexadécimal, la valeur %s permet d’afficher la mémoire sous la forme de
châıne de caractères. Nous exécuterons chaque exercice, en mode
32 bits et en mode 64 bits et nous étudierons les différences en
terme d’exploitation. Nous utiliserons les options suivantes pour faciliter
l’exploitation :

32 bits :

gcc -m32 -fno-stack-protector -mpreferred-stack-boundary=2

64 bits :

gcc -fno-stack-protector -mpreferred-stack-boundary=4

1. Exécutez le programme vulnérable en utilisation “normale”.

2. Exécutez le programme vulnérable avec des valeurs bien choisies du
paramètre de façon à pouvoir afficher la valeur du mot de passe at-
tendu. Faites des essais successifs car il est difficile d’être certain de
la position de la variable secret.

2

TLS SEC TP2

3. Modifiez maintenant le programme de telle façon que le tableau
entree ne soit plus static. Comment pouvez-vous de nouveau faire
afficher le mot de passe attendu ? Pourquoi ?

4. Modifiez maintenant la déclaration de secret ainsi :

char secret[]="secretsympa";

Comment pouvez-vous de nouveau faire afficher le mot de passe at-
tendu ?

1.2 L’utilisation du format %n

Afin de pouvoir réaliser une exploitation en modifiant la mémoire du
programme vulnérable, il est néssaire d’utiliser l’instruction de formattage
particulier : %n.

Nous allons ici utiliser un petit programme pour comprendre à quoi
sert ce paramètre. Pour cela, nous vous proposons d’utiliser le programme
suivant :

#include <stdio.h>

#include <string.h>

int main() {

char *buf = "0123456789";

int n;

printf("%s%n\n", buf, &n);

printf("n = %d\n", n);

printf("buf = %s%.10d%n\n", buf, strlen(buf), &n);

printf("n = %d\n", n);

}

1. Exécutez ce programme et mettez en évidence l’utilisation de %n.

1.3 L’exploitation en écriture

Nous allons à présent faire en sorte de modifier des données du pro-
gramme vulnérable par exploitation d’une vulnérabilité de type châıne de
format. Soit le programme vulnérable suivant :

3

TLS SEC TP2

#include <stdio.h>

void affiche(long d)

{

printf("\nvaleur : %d\n",d);

}

int main(int argc, char * argv[]) {

long n=1;

char buf[8] = "\xaa\xaa\xaa\xaa";

affiche(n);

printf(argv[1]);

affiche(n);

}

La vulnérabilité ici réside dans l’utilisation de la fonction printf. Nous
allons réaliser une exploitation pas réaliste du tout mais qui nous permet de
nous faire la main dans un premier temps. Nous allons simplement affecter
au buffer buf la valeur de l’adresse de n en modifiant le code source (cette
insertion de l’adresse de n est donc totalement artificielle. Dans le cas d’une
véritable attaque, c’est à l’attaquant d’essayer de devenir et d’injecter cette
adresse en utilisant des entrées-sorties du programme). Ainsi, nous pourrons
ensuite de modifier la valeur de n en utilisant une châıne de format et la
paramètre %n.

Nous compilerons à nouveau avec les options :

32 bits :

gcc -m32 -fno-stack-protector -mpreferred-stack-boundary=2

64 bits :

gcc -fno-stack-protector -mpreferred-stack-boundary=4

1. Recherchez l’adresse mémoire de l’entier n. Attention, cette adresse
étant dans la pile, elle dépend des paramètres que vous allez passer
au programme principal. Affectez cette adresse au buffer buf en mo-
difiant le code source. Bien sûr, ca n’est pas réaliste mais c’est un
premier exercice.

4

TLS SEC TP2

2. Exploitez ce programme à l’aide d’une châıne de format, de façon à
modifier la valeur de l’entier n. De même que pour le premier exercice,
on réalisera l’exploit en 32 bits et en 64 bits.

1.4 Seconde exploitation en écriture

Nous allons dans cette section, examiner un code quasiment identique
au second exemple vu en cours. Ce code utilise la fonction snprintf.

1.5 Le code vulnérable

#include <stdio.h>

#include <string.h>

void affiche1(char * buf)

{

printf("buffer : [%s] (%d)\n", buf, strlen(buf));

}

void affiche2(int * p)

{

printf ("i = %d (%p)\n", *p, p);

}

int main(int argc, char **argv)

{

int i = 1;

char buffer[64];

char tmp[] = "\x01\x02\x03\x04\x05\x06\x07";

snprintf(buffer, sizeof buffer, argv[1]);

buffer[sizeof (buffer) - 1] = 0;

affiche1(buffer);

affiche2(&i);

return(0);

}

L’exploitation va consister ici également à modifier la valeur de l’entier
i également mais cette exploitation est légèrement plus compliquée. Au lieu
d’écrire en dur dans le code source l’adresse de i dans buffer, nous al-
lons pouvoir la passer en paramètre et écraser buffer grâce à la fonction

5

TLS SEC TP2

snprintf. En même temps, nous allons préciser un format (qui est absent
dans le code source) basé sur l’utilisation de %n pour écraser l’entier i.

Nous compilerons à nouveau avec les options :

32 bits :

gcc -m32 -fno-stack-protector -mpreferred-stack-boundary=2

64 bits :

gcc -fno-stack-protector -mpreferred-stack-boundary=4

1. Exécutez ce programme de façon simple.

2. Exécutez de nouveau ce programme en utilisant une châıne de format
en lecture et constatez que vous pouvez consultez le contenu de tmp

mais aussi de buffer.

3. Faites en sorte de copier dans les premiers octets de buffer l’adresse
de i et utilisez une châıne de format, ainsi que vue en cours, permet-
tant ensuite d’écraser l’entier i. Vous réaliserez l’exploit en 32 bits et
en 64 bits.

2 Integer overflow

Dans cette seconde partie, nous allons utiliser le petit exemple vu en
cours pour mettre en évidence des vulnérabilités de type integer overflow.
Nous verrons qu’il est possible d’exploiter ce type de vulnérabilité pour, par
exemple, écrire en mémoire et modifier la valeur d’une variable.

2.1 Le programme vulnérable

Soit le programme suivant :

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

struct data

{

char out[256];

int i;

};

6

TLS SEC TP2

int copy(char * buf1, char * buf2, unsigned int len1,

unsigned int len2){

struct data d;

printf("%u\n",len1+len2);

if(len1 + len2 > 256){

return -1;

}

memcpy(d.out, buf1, len1);

printf("%x\n",d.i);

memcpy(d.out + len1, buf2, len2);

return 1;

}

int main(int argc, char * argv[])

{

copy(argv[1],argv[2],atoi(argv[3]),atoi(argv[4]));

}

La vulnérabilité de ce programme réside dans le test (len1 + len2). Il
est possible de faire en sorte que l’un des 2 entiers soit très grand de façon à
ce que la somme soit supérieure à l’entier non signé le plus grand possible.
Dans ce cas, la somme est tronquée et peut devenir inférieure à 256 et ainsi
ne pas satisfaire le test if. Ainsi, il suffit par exemple de donner une valeur
très grande à len2 et une valeur supérieur à 256 pour len1 pour que le
test soit validé et que le débordement de out lors de la première copie soit
effectif.

2.2 L’exploitation

Si la variable i se trouve en mémoire après le buffer out, alors, il est
possible d’écraser la valeur de i en réalisant un débordement du buffer out.

1. Choisir les valeur pour len1 et len2 qui vont vous permettre de
valider le test et d’écraser i lors de la première copie.

2. Ecrire la fonction main qui va appeler la fonction copie avec ces
deux entiers. On utilisera argv[1] et argv[2] pour les deux châınes,

7

TLS SEC TP2

argv[3] et argv[4] pour les deux entiers (que l’on convertira en
entier au préalable).

3. Lancez le programme de telle façon que vous choisissiez la valeur avec
laquelle va être écrasé i.

3 Programmes SUID et vulnérabilité TOCTOU

Pour ce dernier exercice, nous vous proposons d’illustrer 2 choses : les
problèmes de sécurité que peuvent poser les binaires suid root et les vulnérabilités
de type TOCTOU (Time to Check, Time to Use). Nous allons pour ceci uti-
liser une machine virtuelle. Les enseignants vous donneront plus d’informa-
tions pour la récupérer. Il vous suffit de la recopier dans le dossier /tmp de
votre machine puis de la décompresser et exécuter le script ./start.sh La
machine virtuelle se situe dans le dossier /mnt/gei/TP SECU LOGICIELLE/vm

et elle s’intitule lubuntu-18.04.15-tp-secu-logiciel-64-v2.tar.gz.
Une fois connecté sur la VM avec le compte fourni par l’enseignant, entrez

dans le dossier tp2. Celui-ci contient un binaire suid root (race) ainsi qu’un
fichier secret (que seul root peut lire ou modifier).

Nous allons dans un premier temps étudier le binaire race à l’aide d’un
deassembleur et décompilateur : ghidra.

1. Pour cela, il vous suffit d’aller dans le dossier ghidra 10.1.5 PUBLIC

et de lancer la commande ./ghidraRun.

2. Ouvrez le fichier race. Ghidra vous propose une fenêtre avec le code
desassemblé sur la gauche de l’écran mais peut aussi vous proposer
sur la droite une fenêtre de décompilation.

3. Choisissez la fonction main sur la gauche de l’écran et analysez son
code décompilé qui apparâıt sur la partie droite.

4. En déduire ce que fait le binaire race.

5. Identifiez la vulnérabilité de type TOCTOU (le man des fonctions
appelées est à disposition sur la VM, utilisez les pour comprendre !)

6. Proposez une méthode pour pouvoir ensuite exploiter cette vulnérabilité
et accéder au fichier secret.

8

