ENSEEIHT 3¢ année
TLS-SEC TP

Vulnérabilités logicielles - TP3

14 novembre 2023

Ce TP a pour but de mettre en ceuvre les classes d’attaques logicielles avancées
vues en cours, le tout en présence de mécanismes de protection a 1’état de ’art mis
en ceuvre par les systémes d’exploitation GNU /linux.

Le systéme étudié met en ceuvre un protocole de journalisation d’événements
transportés a 'aide d’un pipe nommeé entre un client et un serveur. La mise en ceuvre
coté serveur du protocole de journalisation est vulnérable. Le serveur est privilégié
et le client est sous maitrise de ’attaquant.

L’étudiant devra exploiter cette vulnérabilité de fagon a produire une primitive
de lecture et d’écriture mémoire du processus serveur, contourner les mesures de
protections modernes et enfin obtenir le recouvrement du processus attaqué par un
shell (execve("/bin/sh")).

ATTENTION : La plupart des réponses aux questions posées dans le TP
sont données aprés les questions pour permettre a tout le monde d’avancer. Afin
de maximiser I’expérience pédagogique, veillez a bien parcourir linéairement le sujet.

1 Préparations

$ tar xvf lubuntu-18.04.15-tp-secu-logiciel-64.tgz

$ cd lubuntu-18.04.15-tp-secu-logiciel-64

sudo si vous n'avez pas le droit de créer des interfaces et de changer kvm
$./start.sh

Une fois la VM lancée, rendez-vous dans le dossier "n7/tp3

Accés au fichiers de la VM

Qemu relaye en DNAT le couple ip:port hote localhost:2222 vers le couple
de le couple ip-vm:22 de la VM. Il est donc possible de se connecter sur le serveur
OpenSSH de la VM pour télécharger les fichiers. Depuis 'héte :

$ scp -P 2222 -r n7@localhost:/home/n7/tp3 .
$ sftp -P 2222 n7@localhost

ENSEEIHT TP

2 Un protocole de journalisation (log) client / serveur

Ce TP étudie la mise en ceuvre d’un protocole de log client / serveur vulnérable.
Le protocole permet & un client unique d’envoyer un flux de données, préférablement
texte, & un serveur qui va découper ce flux de texte en fichiers de taille définie par le
client.

2.1 Description sommaire du protocole de log

Les fichiers créés par le serveur portent un nom de la forme :
logs/<majeur>.<mineur>.txt. Le client controle directement la numérotation majeure
des fichiers a ’aide de I’envoi de fin de fichier. Une fin de fichier ferme le fichier courant
et ouvre un nouveau fichier de la forme : logs/<majeur>+1.0.txt. Lorsque la taille
maximale du fichier courant est atteinte, le serveur ferme le fichier courant et ouvre un
nouveau fichier de la forme : logs/<majeur>.<mineur>+1.txt. Le client controle la
taille du fichier en envoyant des messages spéciaux (de contexte) au serveur qui vont
spécifier une nouvelle taille maximale. La taille maximale supportée par le protocole
est 0x100 octets par fichier. Dans le reste de ce document on appelle session de
log les fichiers crées avec le méme nombre majeur. Le client peut aussi demander
au serveur d’inverser le contenu individuel des fichiers avec un message de contexte.
Cette fonctionnalité est une coquille vide dans le code du serveur, elle sera utilisée
seulement pour executer une de nos attaques.

Le client et le serveur communiquent & ’aide d’un canal de communication fiable
en mode flux. Dans notre cas nous utilisons un pipe nommé (mkfifo). Ce protocole
implique principalement deux primitives : des messages de données et des messages de
contexte dont les entétes sont décrites dans les tableaux 1 et 2. La derniére primitive
(tableau 3) sert a terminer le processus serveur depuis le client.

L’image 1 illustre le scénario d’attaque que nous considerons. Un adversaire a
corrumpu le client et peut y exécuter du code arbritraire. Dans ce TP nous simulons
cette premiére attaque en modifiant directement le code du client.

’ Type ‘ Nom Description
int32 | type 0 : données
int32 | data_length taille des données placées aprés 'entéte
int32 | end_of_packet | fin de fichier majeur courant
int32 | - réservé

TABLE 1 — Entéte de message de données

Nous remarquerons que les entétes de message sont de la méme taille pour
simplifier leur traitement.

Le tableau 4 représente un paquet de données valide. La représentation des
nombres sur le réseau est Little Endian, c’est a dire identique a celle des machines
Intel (a bon entendeur...).

ENSEEIHT TP

’ Type ‘ Nom Description
int32 | type 1 : contexte
int32 | data_length taille des données placées aprés 'entéte

int32 | maximum_log_file_size | taille maximum d’un fichier de log

int32 | reverse_order inverser les octets des fichiers de log

TABLE 2 — Entéte de message de contexte

’ Type ‘ Nom Description
int32 | type 2 : fin de serveur
int32 | data_length | taille des données placées aprés l'entéte
int32 | - réservé
int32 | - réservé

TABLE 3 — Entéte de message de fin de serveur

Un entéte précéde toujours des données & envoyer. La notation "C —" signifie que
le client envoie un message au serveur. Dans le cadre de ce protocole, nous pouvons
avoir l'interaction suivante :

1. C — ctx : taille des fichiers 0x20 octets

C — 8xdata : "Dummy\n" : 8 lignes de log

C — data.end_of_packet = 1 : client termine le fichier majeur en cours
C — ctx : nouvelle taille des fichiers 0x40 octets

C — 16xdata : "Dummy\n" : 16 lignes de log

C — data.end_of_packet = 1 : client termine le fichier majeur en cours

N ok N

C — end : client termine le serveur

Coté serveur les premiers fichiers ne peuvent pas dépasser 0x20 octets. Si le
prochain message recu ne rentre pas, on ferme le fichier courant, on incrémente le
numéro mineur et ouvre le prochain fichier. Dans le cas de notre exemple, les 8
premiers logs recus (6 octets par message) sont découpés de la fagon suivante :

— 1 fichier de 5 x 6 octets "Dummy\n", appelé 0.0.txt
— 1 fichier de 3 x 6 octets "Dummy\n", appelé 0.1.txt

Pour la deuxiéme session de log on a :

— 1 fichier de 10 x 6 octets "Dummy\n", appelé 1.0.txt
— 1 fichier de 6 x 6 octets "Dummy\n", appelé 1.1.txt

2.2 Mise en ceuvre du protocole

Le client est décrit en langage C dans le fichier client.c, le serveur dans le
fichier server.c. Un Makefile vous permet de générer le client et le serveur a l'aide

ENSEEIHT TP

Entéte
champ Données
type data_length |end_of_packet|réservé
offset||00 04 08 Oc 10 14

[packet |00 00 00 00]06 00 00 0000 00 00 00[00 00 00 00°D’ *u’ ’m’ ’m’ ’y’ \n|

TABLE 4 — Message de données transportant un message de log de 6 caractéres

write()_ - — - - — read()
client.c - Tube = =~ aserveur.c
T—6) [eella] —
euid = ./pipe euid = root

| read() \ / write()
\

\ o
\

Q ./logs/ drwxr-xr-x root root
0.0.txt 1.0.txt CFWXT--T-- root root
0.1.txt 1.1.txt

FIGURE 1 — Architecture client / serveur de log

du compilateur GCC : make serve et make run_test. Les recettes dgb_serve et
dbg_run_test permettent de lancer respectivement GDB sur le serveur et le client
pour les déboguer. La figure 1 décrit ’architecture de ce TP.

Le fichier log_protocol.h décrit les structures protocolaires du protocole de log.
Le fichier log.c implémente les primitives de débogage et d’affichage d’information
sur la sortie standard pour le client et le serveur.

Ouvrez le fichier log.c et observez la déclaration de la wvariable
FILE *xfile_debug;. Dans quelle section du programme est-t-elle normalement
déclarée (data / bss / text) ? Notez bien cette particularité pour plus tard.

2.3 Prise en main du code du client

Il est maintenant temps de prendre en main le code du client. Les fonctions
send_ctx() et send_data() permettent d’envoyer au serveur des messages de contexte
et de données logs.

Le programme client met en ceuvre I’exemple de la section précédente a l'aide de
la fonction test1() ;. Les fichiers de logs seront crées en cohérence.

Lisez le code de test1() ainsi que de des fonctions send_ctx() et send_data().

ENSEEIHT TP

2.4 Prise en main du code du serveur

Le serveur bufferise en mémoire les bouts de fichiers de logs recus des messages
de données. Il les écrit sur le disque une fois le buffer plein ou la fin de fichier regue.
La taille maximum du buffer est le minimum entre la taille définie par 1'utilisateur
et la taille maximum du buffer alloué en mémoire.

// Log file buffer management
struct log_file {
char buf [_LOG_MAX_FILE_SIZE];
[..]
unsigned int minor;
unsigned int major;
unsigned int buf_size;

s
struct log_file log_file;
[..]

unsigned int maximum_log_file_size = _LOG_MAX_FILE_SIZE;

La structure du serveur struct log_file contient le buffer de logs buf ainsi que
la quantité de données actuellement utilisée buf _size.

La variable maximum_log_file_size contient la taille maximum du buffer configurée
par l'utilisateur avec un message de contexte. La macro _LOG_MAX_FILE_SIZE est
la taille maximum configurable pour le buffer ainsi que sa taille réellement allouée
(0x100 octets). Enfin, les champs minor et major de la structure log_file permettent
de mettre en ceuvre la numérotation des noms de fichiers.

Dans quelle section est déclarée la variable maximum_log_file_size ? Est-ce la
méme que pour la structure log_file?

2.5 Premiers développements

Il manque a I'implémentation actuelle du client la fonction permettant d’envoyer
la troisiéme primitive protocolaire end pour fermer le serveur.

— En vous inspirant des fonctions send_ctx() et send_data(), écrivez une
fonction C send_end() permettant d’envoyer un message de fin de serveur.
Le prototype & respecter est le suivant : void send_end(void) ;

— Modifiez la fonction main et décommentez les fonctions nécessaires a la bonne
terminaison du serveur a la fin des tests.

Testez vos modifications en exécutant le serveur, puis le client et comparez-les au
listing suivant. Ouvrez un terminal pour I’exécution du serveur, un autre pour
le client et un dernier pour afficher les fichiers de logs créés par exemple.

ENSEEIHT TP

Générer les cibles binaires
$ make

Lancer le serveur

$ make serve

Le serveur se met en écoute sur le pipe nommé et attend des commandes du
client. Attention, le serveur doit étre lancé avant le client. Ouvrir un autre terminal
et lancer le client :

$ make run_test

Le serveur termine correctement et les fichiers générés suivants sont :

$ cat logs/0.0.txt $ cat logs/0.1.txt
Dummy Dummy

Dummy Dummy

Dummy Dummy

Dummy

Dummy

$ cat logs/1.0.txt $ cat logs/1.1.txt
Dummy Dummy

Dummy Dummy

Dummy Dummy

Dummy Dummy

Dummy Dummy

Dummy Dummy

Dummy

Dummy

Dummy

Dummy

3 Vulnérabilité de mise en ceuvre du protocole

Le coeur de métier du serveur de log est placé dans la fonction void run(void);
Une boucle de lecture effectue le traitement des messages du client en trois étapes :

— STEP I: Lecture d’un entéte de message (struct log_desc)

— STEP II : Lecture des données suivant le descripteur s’il y en a.
NB : Cette lecture se fait dans un buffer temporaire appelé temp_buf de taille
_LOG_MAX_FILE_SIZE = 0x100

— STEP III : Exécution de ’action associée au message
NB : Si message de données, on copie éventuellement temp_buf dans log_file.buf

ENSEEIHT TP

Quand est-ce que le message de contexte peut-étre envoyé 7 Est-ce que le serveur
s’assure que le client n’envoie pas de message de contexte au milieu d’une session
de log?

Nous allons par la suite tirer partie du laxisme du serveur vis & vis de cette
interaction.

3.1 Vulnérabilité 1

Le serveur de log protége ses copies mémoire de plusieurs facons :

1. Chaque donnée regue en STEP II ne peut faire plus que _LOG_MAX_FILE_SIZE
octets, taille de temp_buf

2. Chaque copie EP IIT de temp_buf vers log_file.buf ne peut étre plus grande
que la taille restant dans log_file.buf, i.e. < maximum _log file_size -
log_file.buf_size

3. Enfin, maximum_log_file_size ne peut étre placé a une valeur > _LOG_MAX_FILE_SIZE

De ce fait, toutes les tentatives de dépassements triviales ont I'air d’étre impossibles
... Mais est-ce suffisant 7 7 ?

Développez une fonction test2(), inspirée de test1(), qui va exécuter les actions
protocolaires suivantes :

1. Fermer la session de log en cours avec ’envoi d’une fin de fichier
Placer la taille max de fichier de log a 0x20

Envoyer 0x10 octets de log au serveur

Placer la taille max de fichier de log a 0x10

Envoyer 0x1 octet de log au serveur

Fermer la session de log en cours avec I’envoi d’une fin de fichier

NS s N

Eteindre le serveur

— Compilez et exécutez le client et la fonction test2() ;

— Que fait le serveur lorsque vous envoyez un octet de plus aprés avoir a la fois
baissé la taille maximum & 16 et envoyé 16 octets auparavant 7

— Quelles sont les wvaleurs des variables log_file.buf_size et
maximum_log_file_size aprés le traitement du deuxiéme paquet de
données ?

— Identifiez la ligne de code C ou le serveur calcule la place restante dans le
buffer log_file.buf. Relevez la ligne ot on affiche la place restante.

On voit qu’il est possible de modifier la taille maximum désirée du buffer coté
serveur alors qu’on y a déja placé des données.

ENSEEIHT TP

— Modifiez la fonction test2() au niveau de I’étape 4, en remplacant la taille
maximum désirée par 0x0f

— Compilez et exécutez le client et la fonction test2() ;

— Que fait le serveur lorsque vous envoyez un octet de plus aprés avoir a la fois
baissé la taille maximum & 15 et envoyé seize octets auparavant ? Lisez la
sortie du serveur commengant par Remaining room in log file buffer:

— Quelles sont les wvaleurs des variables log_file.buf_size et
maximum_log_file_size aprés copie?

— Quel type de vulnérabilité avez-vous déclenché ?

Nous sommes donc capables de dépasser maximum_log_file_size.

— Pouvons-nous aussi dépasser la taille allouée pour le buffer
_LOG_MAX_FILE_SIZE? Proposez au moins une méthode.

— Quelle est la quantité maximum de données que 1’on peut copier en une fois
dans log_file.buf en utilisant la vulnérabilité précédente ?

3.2 Exploitation de la vulnérabilité

Nous avons trouvé un buffer overflow dans la copie de temp_buf vers log_file.buf,
il est temps de l'outiller.

— Ecrire une fonction dans le client qui permet de remplir le tableau
log_file.buf a _LOG_MAX_FILE_SIZE octets et de continuer d’écrire plus
loin lors des prochains envois de données

— Voici l'algorithme & exécuter :
1. Commencez par fermer (et donc flusher) la session de log courante avec
un end_of_file pour replacer log_file.buf_size a zéro

2. Placez ensuite la taille maximum a _LOG_MAX_FILE_SIZE avec un
message de contexte

3. Envoyez _LOG_MAX_FILE_SIZE données
4. Repassez & _LOG_MAX_FILE_SIZE—1 avec un message de contexte

— Prototype de fonction : void attack_set_integer_overflow(void);

Cette fonction sera la brique de base de notre client pour construire des attaques
plus complexes! Il est temps de la tester.

— Ecrivez une fonction test3() qui lutilise, puis envoie un octet
supplémentaire.

— Compilez et testez le programme client avec le serveur

— Constatez le dépassement d’un octet du tableau log_file.buf

ENSEEIHT TP

4 Primitives de lecture / écriture

Nous avons trouvé un dépassement en écriture apres le tableau log_file.buf. Il
est temps maintenant de construire une réelle primitive d’écriture dans la mémoire
du serveur. Nous essayerons dans un deuxiéme temps si possible d’en déduire une
primitive de lecture de la mémoire du serveur.

4.1 Primitive d’écriture

Nous allons développer dans cette section une fonction qui permet d’écrire arbitrairement
a la suite du tableau log_file.buf n < LOG_MAX FILE SIZE octets.

— Développez la primitive d’écriture qui écrit size octets aprés la fin de
log_file.buf :
void attack_write_mem(char *buf, int size);
— Algorithme a suivre :
1. Préparer le dépassement de log_file.buf avec un appel a
attack_set_integer_overflow()

2. Envoyer le paquet contenant les données temp_buf de l'attaquant. Ne
fermez surtout pas le fichier, c’est important pour la suite.

Nous allons tester cette fonction a ’aide des sections suivantes.

4.2 Accessibilité en écriture du dépassement

Nous pouvons dépasser arbitrairement en écriture avec log_file.buf. Que pouvons-
nous écraser ?

Nous nous intéressons a ce qui est placé aprés le tableau log_file.buf. Commengons
par les autres champs de cette structure :
Offset Of : unsigned int minor;
Offset OF : unsigned int major;

Offset OF : unsigned int buf_size;

— Utilisez gdb sur log_server pour afficher '’emplacement mémoire de ces
champs par rapport a la fin de log_file.buf

— Notez précisément 'offset des champs pour plus tard. Définissez des macro
C, ex : #define 0_END_MINOR Oxcafe // offset Oe_1

Nous pouvons écraser les champs minor, major et buf _size, placés respectivement
aux offsets Of, O35 et O5. Nous utilisons cette propriété dans la prochaine section.

ENSEEIHT TP

4.3 Nom de fichier arbitraire

Les fichiers de logs semblent étre une source d’information intéressante pour
développer une primitive de lecture mémoire si on arrive a controler ce que le serveur
y écrit.

Une des difficultés que va devoir surmonter 'attaquant est de deviner et controler
de facon déterministe quel sera le prochain fichier utilisé par le serveur. Les noms de
fichiers sont générés a I'aide du compteur majeur et mineur de fichiers de la structure
log_file.

Quel est le comportement du serveur vis & vis du fichier courant de sortie dans
le dossier 1logs/ lorsque le client envoie un message de fin de fichier ?

Si nous pouvons donc modifier le compteur majeur et provoquer une fin de fichier,
nous pouvons influencer le nom des prochains fichiers utilisés par le serveur.

Si nous voulons placer le prochain nom de fichier & logs/n.0.txt, quelle est la
valeur & affecter alog_file.major?

Nous avons maintenant tous les éléments permettant le contréle du prochain
fichier ouvert depuis le client.

— Eecrire une fonction qui va placer le prochain nom de fichier de logs selon une
entrée choisie par 'attaquant :
void attack_set_filename(int major);

— Algorithme & suivre :

1. Ecrire sur le serveur O5+ 0x04 octets contenant : O% octets de padding
et le numéro major souhaité par I'attaquant —1

2. Fermer le fichier en cours avec une fin de fichier

Nous allons développer la fonction test4() pour évaluer cette fonctionnalité.

— Deéveloppez une fonction test4() qui

1. Place le nom de fichier a 42
attack_set_filename(42)

2. Ecrit "Dummy\n" dans le fichier
3. Ferme le fichier

— Exécutez les server avec gdb : make dgb_serve
— Exécutez le client

— Listez les fichiers pour confirmer la création du fichier logs/42.0.txt

Pour tester cette fonction de fagon précise, il est nécessaire d’utiliser le débogueur
gdb sur le serveur. Vous pouvez utiliser la cible make dbg_serve :
$ make dbg_serve.

10

ENSEEIHT TP

4.4 Lecture dans un fichier de log a offset et taille donnés

Pour manipuler automatiquement les fichiers de logs en lecture, nous vous proposons
la fonction au prototype suivant :
int read_file(int major, char *buf, int size, int offset);

Elle permet de lire dans un fichier appelé logs/<major>.0.txt, size octets, &
offset offset, & destination de buf.

Lisez tout de méme rapidement le code de la fonction pour vous convaincre de
la pertinence de ’approche.

Nous sommes maintenant capables de controler le fichier de sortie utilisé par le
serveur pour écrire des données et d’y lire automatiquement a un offset et une taille
donnée. Nous allons voir comment y écrire des données de la mémoire du serveur
dans la prochaine section.

4.5 Primitive de lecture

La quantité de données écrites dans le fichier de log courant est controlée par
le champ log_file.buf_size qui fait 32-bits. Si nous maitrisons & distance ce
nombre, nous pouvons lire arbitrairement les données de la mémoire du serveur, a
partir de log_file.buf.

— Proposez une stratégie d’attaque qui utilise la primitive d’écriture mémoire
afin de lire arbitrairement la mémoire du serveur placée aprés le tableau
log_file.buf.

— Proposez une formule F; pour calculer la taille & placer dans le champ
log_file.buf_size.

— Quelle action effectuée par le serveur faut-il considérer dans ce calcul 7

Il est maintenant temps de développer la primitive de lecture basée sur la primitive
d’écriture.

11

ENSEEIHT TP

— Développez une primitive de lecture au prototype suivant :
void attack_read_mem_at(char *buf, int size, int offset);
— buf : buffer de sortie
— size : taille du buffer de sortie

— offset : offset de lecture
ATTENTION : calculé a partir du DEBUT du tableau, contrairement
& la primitive d’écriture qui calcule & partir de la fin

— Algorithme & suivre :
1. Placer le nom du fichier de sortie
ex : attack_set_filename (0x10);

2. Réécrire la taille du buffer a offset Of en utilisant la primitive d’écriture
et la formule I}
Attention, ceci incrémente le nom majeur du fichier de sortie
ex : attack_write_mem(&overflow[0], sizeof (overflow));

3. Fermer le fichier pour pousser les données dans le fichier de log

4. Attention au temps que le serveur met pour créer le fichier sur le disque.
Le client est le serveur ne sont pas synchrones!

5. Extraire size données du fichier de log & offset offset
ex : read_file(0x10 + 1, buf, size, offset);

5 Intrusion 1 : casser ’ASLR

Une des mesures modernes de tolérence aux intrusions est I’ASLR. Elle impose &
un attaquant & agir & I’aveugle en terme d’espace d’adressage pour I'exécution d’une
attaque.

Si nous prenons 'exemple d’un buffer overflow classique dans la pile, 'attaquant
peut connaitre de fagcon déterministe la distance du buffer dépassé avec I’emplacement
de I'adresse de retour de la fonction vulnérable en mémoire. En outre, lorsqu’il s’agit
d’écraser cette adresse en adressage absolu, il est impossible pour l'attaquant de
savoir oul est positionné du code utilisable. En théorie ’espace de recherche est de
248=1-12 5ous processeur intel en mode ia-32e.

Cependant, 'ASLR est loin d’étre parfait dans sa mise en ceuvre concréte. En
effet, 'espace d’adressage virtuel est seulement décalé vis a vis d'un offset fixe tiré
aléatoirement dans un intervalle restreint de I’espace d’adressage virtuel, la distance
relative de chaque élément du programme n’étant pas modifiée. Par conséquent,
connaitre la position en mémoire aprés chargement du moindre élément d’un programme
casse complétement I’ASLR. On est en mesure d’adresser relativement tous les éléments
du programme vis a vis de celui-ci alors qu’on a son adresse absolue.

Le but de cette section est donc de lire une adresse absolue en mémoire aprés
chargement du programme (un pointeur).

La primitive de lecture développée précédemment permet de lire arbitrairement

12

ENSEEIHT TP

la mémoire & partir du début du tableau log_file.buf. Nous allons déterminer les
éléments accessibles dans la section suivante.

5.1 Accessibilité en lecture du dépassement

Le programme nm permet d’inspecter les exécutables pour trouver dans quelle
section les symboles sont déclarés et a quel offset de chargement du programme.
$ nm log_server | grep <symbole>
La section est indiquée par un caractére en majuscule ou en minuscule :

— [bB] : bss
— [dD] : data
— [tT] : text

Une minuscule signifie symbole local et une majuscule signifie symbole exporté,
i.e. utilisable par d’autres programmes lors de 1’édition des liens.

— Utilisez la commande nm pour trouver dans quelle section du programme se
trouve la structure log_file

— Affichez ensuite tous les symboles de la section dans laquelle se place la
structure log_file
$ nm log server | grep -i ' <section-caracter> '

— Triez les de fagon & obtenir ceux qui sont placés aprés la structure log_file
— Quel pointeur déja observé en section 1 est placé aprés?

— Relevez précisément son offset par rapport au début de log_file.buf : Oll’.
Définissez la macro C correspondante : #define 0_START_FILE_DEBUG x

— Quelle est la taille de ce type?

Une analyse sémanique de la valeur du pointeur @file_debug permet de casser

I’ALSR.

— Lisez 1st/log.c:14 et observez avec quoi la variable est initialisée. A quel
symbole précédent, définit dans le bss le membre droit de I'affectation
correspond-t-il 7

— Relevez son offset par rapport au début du programme : O}. Définissez la
macro C correspondante : #define 0_LOAD_STDOUT x

— Proposez une formule F» permettant de calculer ’adresse de chargement du
programme, B, & partir de la valeur de file_debug et Oll.

5.2 Lecture du pointeur pour "régler son compte & ’ASLR"

Il est temps de dérandomiser I'espace d’adressage a 1’aide de la lecture du pointeur
FILE **xfile_debug.

13

ENSEEIHT TP

— Ecrivez une fonction test4() qui lit le pointeur file_debug & l'offset Oll’ et
calcule I'adresse de chargement B a I’aide de la formule I et de O}. Utilisez
évidemment votre primitive de lecture!

— A P’aide de la commande nm relevez l'offset de la fonction motd par rapport
au programme : O}

— Enfin, a l'aide de O} vous calculerez 1’adresse dérandomisée de la fonction
motd.

6 Intrusion 2 : casser le canarie de la fonction reverse()

La fonction reverse () implémente le champ de la primitive protocolaire ctx.reverse_order,
c’est a dire inverser les caractéres du buffer log_file.buf avant de les copier dans le
fichier de log courant. Cette opération est déclenchée soit lors de la réception d’une
fin de session (end_of_file), soit lorsque le buffer est plein.
La fonction reverse() n’est que partiellement mise en ceuvre pour l'instant sur
le code du serveur. Observez tout de méme le code serveur de la fonction reverse ().

— Quelle opération critique est exécutée par le serveur ?

— Quelle vulnérabilité peut-étre exécutée 7

— Dans quelle section mémoire ?

Les canaries sont une mesure de tolérance aux intrusions efficace contre les
dépassements de buffer dans la pile qui visent la réécriture de ’adresse de retour
d’une fonction (ici reverse()).

Les canaries sous GNU / linux ont la forme suivante : 0xXXXXXXXXXXXXXX00. Le
premier octet a zéro permet de stopper les buffer overflow exécutés avec une copie
de chaine (caractére de fin de chaine). Les canaries des fonctions sont constants pour
toutes les exécutions une fois qu’il ont été tirés au sort au démarrage du processus.

Pour réécrire ’adresse de retour de reverse () nous allons devoir deviner la valeur
des 56 bits du canarie (C) et les offsets du canarie (Of) et de adresse de retour (Of)
par rapport a la fin du buffer temp_buf.

6.1 Deécouvrir emplacement du canarie de reverse()

Dans cette section, nous allons relever les offsets de 'adresse de retour et du
canarie par rapport a la fin du tableau temp_buf, destination de la copie vulnérable
de la fonction reverse() pour réécrire son adresse de retour.

14

ENSEEIHT TP

— Ecrire une fonction test6() permettant de déclencher l'exécution de
reverse()

— Algorithme :

— Placez la taille maximum de fichier & 0x100 et le mode reverse_order
— Envoyez _LOG_MAX_FILE_SIZE octets avec un message de données

— Fermez le fichier (la session en cours)

Nous pouvons maintenant relever les offsets O et Og a 'aide du débogueur. Le
canarie est placé en général 16 octets avant ’adresse de retour.

— Lancez le serveur en mode de débogage avec la cible make dbg_serve, puis
le client.

— Placez un point d’arret aprés le memcpy () de reverse()
(gdb) b 171

— Exécutez le serveur et relevez les valeurs des offsets et créez les macros
suivantes :
#define O0_END_COOKIE x // Offset 0O_e4
#define O_END_RETURN x // Offset 0_eb

— (gdb) p &temp_buf
— (gdb) info frame
— (gdb) x /60gx $rsp

6.2 Exécution du buffer overflow dans la pile

Nous voulons maintenant que cette exécution déclenche un buffer overflow dans
la pile de reverse().

— Quel champ / variable controle la taille de la copie memcpy () 7
— Comment contrdler cette valeur depuis le client ?

— Proposez un algorithme qui permet de déclencher ce buffer overflow afin de
réécrire présisément 1’adresse de retour

— Combien de dépassements de buffers sont exécutés avec la méme donnée dans
le tableau log_file.buf ?

— Dessinez grossiérement la forme des données malveillantes & envoyer pour
réécrire le canarie, 'adresse de retour et le controle de la taille. Positionnez
les offsets dans le dessin !

6.3 La tolérance aux fautes qui dessert la tolérance aux intrusions ?

Dans un environnement classique, un écrasement non correct d’un canarie déclenche
un exception qui est relayée a I’aide du signal SIGABRT, dont le traitement par défaut
termine le programme : SIG_DFL.

15

ENSEEIHT TP

Le serveur a été développé pour étre tolérant aux fautes. Il surcharge notamment
le traitement (handler) de signal associé a SIGABRT.

— Lisez les lignes de code associées aux appels de fonction setjmp() et
longjmp ()
— Que fait le serveur si un dépassement est détecté ?

— Comment pouvons nous tirer partie de ce mécanisme de tolérance aux fautes
pour attaquer le canarie ?

6.4 Attaque du canarie

Il est maintenant temps de deviner la valeur C du canarie.

Quelle est dans notre cas la méthode la plus efficace en complexité pour attaquer
le canarie 7 Donnez sa complexité en notation asymptotique.

L’attaque par force brute ne peut réussir si et seulement si nous disposons d’un
oracle nous permettant de deviner si la valeur choisie est correcte.

’Quel est cet oracle dans notre cas?

Nous avons une méthode d’attaque du canarie et un oracle, il est temps d’instrumenter
cette attaque.

— Développez une fonction capable de bruteforcer un octet de canarie de la
fonction reverse(). Son prototype doit étre :
int attack_guess_stack_cookie(int stack_cookie_offset, char
xguessed, int guessed_size);
— stack_cookie_offset : Of
— guessed_buf : tableau contenant les octets du cookie déja résolus

— guessed_size : la taille de ce tableau

— Développez une fonction test7() qui casse les 7 octets du canarie

Déboguez le code du serveur avec la cible de débogage make dbg_serve. Désactivez
I’arrét lors de la détection du signal SIGABRT pour ne pas ralentir 'attaque : (gdb) handle SIGABRT nosto

7 Return in motd() et ROP shellcode

Nous avons maintenant tous les paramétres pour exécuter du code réutilisé sur
le serveur depuis un retour de la fonction reverse() :

— Of : offset du canarie
— Of : offset de I'adresse
— Of : offset de la taille de la copie dans la pile : file_log.buf_size

— (C : valeur du canarie

16

ENSEEIHT TP

7.1 Return into z

Il est temps décrire une fonction qui réécrit 'adresse de retour avec une chaine
de ROP arbitraire.

Ecrire la fonction suivante qui exécute sur le serveur une chaine de ROP
arbitraire. Voici le prototype a respecter :

void attack_stack_bof_exec(int stack_cookie_offset, long int
cookie, void *chain, int chain_size);

— stack_cookie_offset : Of

— cookie : valeur du canarie

— chain : chaine de ROP copiée a 0x10 bytes aprés le canarie : Of = adresse
de retour

— chgain_size : taille de la chaine de ROP

7.2 Return in motd()

Commencez par tester votre fonction attack_stack_bof_exec() avec une chaine
de ROP de taille 1 qui retourne dans le fonction motd (). Attention le programme va
effectivement défaillir car le retour de motd() sera invalide.

Ecrivez la fonction test8().

7.3 ROP shellcode

Une fois que vous étes sur du fonctionnement de la fonction attack_stack_bof_exec(),
constituez une chaine de ROP avec ROPGadget pour exécuter un véritable shellcode
sur le serveur.

Ecrivez la fonction test9() qui exécute un ROP shellcode.

8 Conclusion

Vous pouvez maintenant aller dormir ...

9 Reéférences

https://ctf101.org/binary-exploitation/stack-canaries/

17

