TLS-SEC
TLS-SEC TP

TP Sécurité du logiciel: Débordement de tampon
mémoire par la pratique

Objectifs : Comprendre les rudiments du débordement de tampon dans la
pile. Pour cela, nous allons procéder en deux étapes. La premiere étape (sec-
tion 1) consiste simplement & modifier dans la pile Padresse de retour d’une
fonction. Cet exercice, méme s’il ne constitue pas une attaque a proprement
parler, est fondamental pour bien comprendre le principe du débordement
de tampon. Ensuite, nous étudierons un réel débordement de tampon sur
un programme vulnérable (section 2).

1 Identification et modification de ’adresse de re-
tour

Nous allons dans un premier temps, modifier 'adresse de retour empilée
lors de I’appel de fonction dans un programme C, et ceci directement dans
le programme C lui-méme. Dans un premier temps, nous présentons le pro-
gramme de test. Ensuite, nous présenterons deux techniques permettant de
localiser I’adresse de retour. Pour finir, nous exécuterons le programme de
test avec la modification de cette adresse.

1.1 Le programme de test
Soit le programme tpl.c :

#include <stdio.h>

void f(int a, int b, int c)

{

char bufferi[4]="aaa";

TLS-SEC TP

char buffer2[8]="bbbbbbb";
}

int main()
{

int x;

x=0;

£(1,2,3);

x=1;

printf ("%d\n",x);
return(0) ;

Pour compiler ce programme, nous utiliserons la commande suivante :
$ gcc -Wall -g tpl.c -o tpl

Comme nous l'avons vu en cours, ’adresse de retour empilée lors de
I'appel de la fonction f se situe non loin de buffer1 et buffer2 dans la pile.
Pour connaitre sa position exacte, on peut analyser ’assembleur ou alors
utiliser les petites astuces présentées en cours. Nous utiliserons ici les deux
techniques.

1.2 Analyser ’assembleur

La traduction en assembleur du programme tpl peut étre obtenue avec
la commande gcc :

$ gcc -Wall -S tpl.c -o tpl.s

L’option -g a volontairement été omise pour ne pas surcharger ’affichage
avec les options de debuggage. Voici un extrait du fichier tp1l.s ainsi obtenu :

$ cat -n tpl.s

f:

.LFBO:

.cfi_startproc

endbr64

pushq %rbp

10 .cfi_def_cfa_offset 16

© 0 N O O

$ cat -n tpl.s

5 f:
6 .LFBO:
7 .cfi_startproc
8 endbr64 TP
9 pushq %rbp @
10 .cfi_def_cfa_offset 16 e 240 I P48 Gy 9“A0*“)
11 .cfi_offset 6, -16] em— RPN 1+ o |
12 movq %rsp, %rbp P = e A, } a, ————4}
; . = R8P 14 REP G4 kP a e |
13 .cfi_def_cfa_register 6 @ refoe @retow @ rfon @ refos 6 hon
14 subq $48, Yrsp P20(13-19) fan(ar-9
15 movl %edi, -36(%rbp) = o=
o k 0 eds, o8¢, & ud Jads, 33 i wué
16 movl %esi, -40(%rbp) t(} e }
0, 0 2 T 2
17 movl %edx, -44(%rbp) 4"»« 3 otd_ReP
@ et M@t

18 movq %£fs:40, Y%rax

19 movq %rax, -8(%rbp)

20 xorl Yeax, %eax

21 movl $6381921, -20(%rbp)

22 movabsq $27692722414576226, Jrax
23 movq %rax, -16(%rbp)

L’état de la pile, juste avant ’exécution de I'instruction de la ligne 7, est
le suivant (I'instruction pushq n’a pas encore été exécutée) :

rsp —

Adresse de retour

ol
/W“4 d bl

1. Déterminez la nature des éléments en ligne 21 et 22. _\’ \ C (flb‘)oa
2. Déduisez les adresses de bufferl et buffer2. ——» '70(7'0 PLQ\ e\ -
3. Tracez I’évolution de la pile, au cours de ’exécution de la fonction f.
4. Déduisez l'adresse de retour relativement au registre rbp, et par k 5 3
conséquent par rapport & bufferl et buffer?). r ui\' 1%
e oy
1.3 Utiliser gdb

Nous allons réaliser toutes les manipulations a l'aide du debugger gdb.
Il est au préalable nécessaire de compiler le programme tpl.c avec 'option
-g. Nous devons déterminer la valeur de ’adresse de retour empilée lors de
I'appel de la fonction f et déterminer la position de cette adresse de re-
tour par rapport a bufferl ou buffer2. Nous utiliserons les fonctionnalités
suivantes de gdb :

3
TLS-SEC TP
$ gdb tpl (<- desassemblage de main)
(gdb) 1list (<- lister le programme source)
1 #include <stdio.h>
2
3 void f(int a, int b, int c)
4 {
5 char bufferi[4]="aaa";
6 char buffer2[8]="bbbbbbb";
7}
8
9 int main()
10 {
(gdb) b 7 (<- point d’arret a la ligne 7)
Breakpoint 1 at Ox11a2: file tpl.c, line 7.
(gdb) run (<- execution du programme)
(gdb) x/10gx bufferl (<- examiner 10 fois 64 bits octets de memoire a

partir de bufferl)
Ox7fffffffed7c: 0x6262626200616161 0x595c480000626262
Ox7fffffffed48c: Oxffffed4bObc93deca 0x555551e000007fff
Ox7fffffffed9c: O0xffffe5a000005555 0x0000000000007fff
Ox7fffffffedac: 0x0000000000000000 0xf7de108300000000
Ox7fffffffedbc: O0xf7££c62000007fff Oxffffe5a800007fff
(gdb) info frame (<- information sur le contexte
d’execution courant)
Stack level 0, frame at Ox7fffffffedal:
rip = 0x5555555551a2 in f (tpl.c:7); saved rip = 0x5555555551e0
called by frame at Ox7fffffffedcO
source language c.
Arglist at Ox7fffffffe458, args: a=1, b=2, c=3
Locals at Ox7fffffffe458, Previous frame’s sp is Ox7fffffffedal
Saved registers:
rbp at Ox7fffffffed490, rip at Ox7fffffffed98
(gdb) disas main
Dump of assembler code for function main:
0x00005555555551b9 <+0>: endbr64
0x00005555555551bd <+4>: push %rbp
0x00005555555551be <+5>: mov %rsp,hrbp
0x00005555555551¢c1 <+8>: sub $0x10,%rsp
0x00005555555551¢c5 <+12>: movl $0x0,-0x4 (%rbp)
0x00005555555551cc <+19>: mov $0x3, %edx

(gdb) x/206gx $rgp
TLS-SEC TP : 0x00000000004004ae

: 9000000000H0H00 0x000000007/febbed

: Ox00007fffffffdb30 0x00007ffff7db5575

: 0007 FfFf7fc7000

: 900001 ffffdaf
0x00005555555551d1 <+24>: mov $0x2,%esi i
0x00005555555551d6 <+29>: mov $0x1,%edi 3 LEJIAAAAAAAC LA -

: Ox00007fFff7fFdOOO 0x0000000000
0x00005555555551db <+34>: callq 0x555555555169 <f> : Bx6584b28289f02a5f 0x6584a2cb96ee2a5f
0x00005555555551e0|<+39>: movl $0x1,-0x4 (%rbp) (o) dienes m;igxuoomfffuoooooa@ 0x00000000AEHA0A0O
0x00005555555551e7 <+46>: mov —OX4(%rbp) ,%eax Dump of assembler code for’ function
0x00005555555551ea <+49>: mov %eax,%esi Dump of assembler code for function Db
0x00005555555551ec <+51>: lea Oxell(%rip),%rdi # 0x555555556004 o

0x00005555555551f3 <+58>: mov $0x0, %eax
0x0000555555656551£f8 <+63>: callq 0x555555555070 <printf@plt>
0x00005555555551fd <+68>: mov $0x0, %eax
0x0000555555555202 <+73>: leaveq
0x000055555565655203 <+74>: retq

1. Déterminez ’adresse de retour en cherchant I'instruction qui suit ’ap-
pel de la fonction £ dans le main. Notez ’adresse de cette instruction.

2. Tentez de repérer cette adresse dans la pile. Pour cela, exécutez le pro- [l v MENG of assembler dump.

gramme et interrompez-le juste apres les initialisations de bufferil = (adb) info frame

. Stack level 0, frame at Ox7ffff all.
et buffer2. Profitez-en pour vérifier que ’adresse de retour que vous [E rip = 0x400488 in f (:7);[saved rip = 6x4804ae
, N T . called by frame at Ox7fffffffdaab
avez trouvée est correcte a ’aide de info frame. source language c.
. . Arglist at Ox7fffffffda70, args: a=1, b=2, c=3

3. Identifiez la distance entre cette adresse et celle de bufferl. Locals at Ox7FFfFFffdaZn, Previous frame's sp is Ox7fffffffdago

L_y OX4O Saved registers:

. rbp at Ox7fffffffda70,| rip at Ox7fffffffda78
1.4 Modifier adresse de retour

Nous avons maintenant tout ce dont nous avons besoin pour modifier
I’adresse de retour de la fonction. Nous allons simplement faire en sorte que
ce programme C saute l'instruction x=1 apres 'appel a la fonction f. Il faut . ’
pour cela déterminer I'adresse dans le main de l'instruction qui suit x=1 de , void f(int a, int b, int c)
facon a sauter a cette adresse et modifier I’adresse de retour (nous savons : ‘ -
maintenant ou elle dans la pile) de fagon a sauter I'instruction.

1. A l'aide de gdb, déterminez la nouvelle adresse de retour a laquelle
nous voulons sauter (dans le main).

)
}

2. Ajoutez dans la fonction £ du code C qui permet de modifier I’adresse of ‘
de retour (Note : comme le code que vous allez ajouter va probable- oot ke - "tH m Wi&
ment nécessiter 1'utilisation d’une nouvelle variable, il faut probable- - _j He (',\g{
ment recalculer la distance entre Padresse de retour et bufferl). o0k :

3. Vérifiez, en exécutant le programme, que la modification fonctionne.

TLS-SEC TP

2 Analyse d’un buffer overflow

Nous allons a présent analyser une “vraie” attaque d’un programme
vulnérable. Pour cela, nous allons utiliser le programme C vulnérable sui-
vant :

void copie(char * ch)

{
char str([512];

strcpy(str,ch); \b'qtt, Jg»p,f o\rv%enu)GQQ. LU
)) oo \ﬂaw

int main(int argc, char * argv[])
{

copie(argv([1]);

return(0) ;

}

2.1 Compilation du programme vulnérable

Comme vous pouvez le constater, ce programme utilise argv[1], pa-
rametre fourni par I'utilisateur, sans ’assainir ni le tester avant de ’utiliser.
Ce parametre est copié dans une variable locale de la fonction copie a l'aide
de la fonction strcpy. Le parametre fourni va donc bien étre recopié dans
la pile, a ’adresse str et ceci a I'aide d’une fonction qui ne vérifie pas que la
taille est correcte avant la copie. Si nous fournissons donc en entrée du pro-
gramme, une chaine de caracteres trop grande, nous pouvons donc écraser
str et les octets suivants, et par conséquent 1’adresse de retour de la fonction
copie.

La compilation du programme vulnérable se fait ainsi :

gcc —-g —fno-stack-protector -z execstack vuln.c -o vuln

Ensuite, de fagon a désactiver la randomization de I'espace d’adressage
des processus (ASLR), exécutez la commande :

$ echo 0 > /proc/sys/kernel/randomize_va_space (faut etre root)
ou
setarch x86_64 -R /bin/bash

TLS-SEC TP

2.2 Le shellcode

Un shellcode est en général utilisé par les attaquants pour étre exécuté
lors du détournement de la fonction (cela leur permet d’obtenir un invité
de commandes sur la machine attaquée). La compréhension de ce shellcode
n’entre pas dans le cadre de notre formation. L’enseignant vous fournira un
exemple que vous pourrez utiliser pour la suite du TP.

2.3 Fabrication de I'argument argv[1]

Il vous reste maintenant a fabriquer une chaine de caracteres, qui sera
fournie en parametre du programme, et qui soit : 1) d’une longueur suffisante
pour espérer écraser adresse de retour dans la pile et 2) qui écrase cette
adresse de retour avec l'adresse ou sera copié cette chaine de caracteres,
c’est-a-dire a l'adresse str. Il faut donc deviner cette adresse. Comme il
est tres difficile d’estimer précisement cette adresse, nous allons dans notre
chaines de caracteres, inclure beaucoup de NOP au début de fagon a pouvoir
s’autoriser une imprécision dans la recherche de 'adresse str.

La chaine que nous allons fabriquer est donc ainsi formée :

NNNNNNNNNNNSSSSSSSSSSSSSSSSAAAAAAAAAA

copie

ou : e
— N est I'instruction NOP; ot e
— SSSSSSSSSSSSSSSS est le shellcode copie(argv
— A est I'adresse supposée de str. t1s
Pour déterminer ’adresse A, comme on a desactivé ASLR, on peut se
servir de la fonction suivante, qui permet en C de connaitre la valeur du

pointeur de pile :

buginfo from the following URLs:

ff' to .gdbinit.

unsigned long get_sp(void) {
asm__("movq %rsp,krax");

}
long l=get_spQ);

sp is Ox7fffffffda8o

70, rip ot PRI

L’attaquant peut mettre a profit cette fonction s’il est capable lui-méme

d’exécuter un programme sur la cible ou sur une machine semblable avec le ,t-' 'se jM'J (?:(/‘a/)?/k (.(DHL O\M il
méme OS et une configuration identique. Vous allez donc, pour déterminer , Lo ‘Q/A' .}_ \"; R ‘ @ gkn_ FQL(N/\
I'adresse A, procéder comme suit : GQA C 0/,\} L C(U slec
— Proposez une méthode pour trouver ’espacement entre le début de
M la chaine de caracteres et 'adresse ou est stockée I'adresse de retour.

TLS-SEC TP

— Ecrire un programme simple en langage C et calculer I’adresse de téte
de la pile en début de main & 'aide de la fonction get_sp).

— Pourquoi cette adresse vous est utile pour trouver ’adresse A

— Faites plusieurs tests en utilisant un offset par rapport a cette téte
de la pile.

— En réalité la chalne de caractéres que l'attaquant fournit au pro-
gramme vulnérable est présente deux fois dans la mémoire du logiciel
vulnérable. Expliquez pourquoi.

— Exploitez le programme vulnérable en utilisant ces deux emplace-
ments mémoire.

3 Les protections du noyau

Pour réaliser ce TP, nous avons désactivé plusieurs mécanismes de pro-
tections. Nous allons les passer en revue et identifier leur utilité.

3.1 Option de compilation de gcc : -z execstack

Compilez le programme vulnérable, sans 'option -z execstack et es- -g -fno-stack-protector tp2.c -o exec &%
sayez a nouveau d’exploiter la vulnérabilité.

$ gcc -g -fno-stack-protector vuln.c -o vuln
21789 segmentation fault (core dumped) ./exec

Que se passe-t-il ? En déduire ['utilité de cette option de compilation.) AQ..
—>>P16L mﬁxeudaklo&,/‘}ﬁwnu’t SQﬂYWW\JF A&La ”

3.2 Option de compilation de gcc : -fno-stack-protector

Compilez le programme vulnérable sans I'option -~fno-stack-protector :

: Cen
$ gcc -g vuln.c -z execstack -o vuln w\aﬂa-—/)(_ uu\ryl\
- Q S [NV 8

Essayez a nouveau 'exploit. Que voyez-vous ?

e RO
> <

. , . - [
Traduisez le programme vulnérable, sans I'option —frﬁ—stack—protector, (X&\Q‘C’ &
en assembleur, et comparez le fichier assembleur généré a la version précédente.

$ gcc -Wall -S -z execstack vuln.c -o vuln_stack-protector.s

Identifiez les zones différentes a laide de la commande diff par exemple
et en déduire l'utilité de cette option.

TLS-SEC TP

3.3 Randomization de I’espace d’adressage

Réactivez la randomization de l’espace d’adressage :
$ echo 1 > /proc/sys/kernel/randomize_va_space

si vous etes root, ou sinon, ouvrez simplement un nouveau shell sans utiliser
la commande setarch.

Créez un programme de test qui invoque la fonction get_sp et affiche la
valeur retournée. Exécutez plusieurs fois ce programme de test et analysez
les retours.

Que permet cette protection ?

)-——bmfv\g\ovae. leeﬂu_ J‘ML &Ov\c amn Y}w\\' A~

(gdb) list copie

copie

str
strepy(str.ch

main argc

copie argv
(gdb) b 6
Breakpoint 1 at
(gdb) r aaa
Starting program:

This GDB supports to-downloading debuginfo from the following URLs

Enable debuginfod for this ion? (y or [n]) n

Debuginfod has been disabled.

To make this setting permanent, add 'set debuginfod enabled off' to .gdbinit
[Thread debugging using libthread_db enabled]

Using host libthread_db library " "

Breakpoint 1, (7fffffffdfac "aaa") at
strepy(str
) info fram
level 0, frame at Ox7fffffffda6O:
400478 in copie (:6) aved rip = 0x4004b6

called by frame at Ox7fffffffda8o

source language c.

Arglist at Ox7fffffffdab50, arg =0x7fffffffdfac "aaa" ~ L/<~_
s at 1fffffffda50, Previous fram x7fffffffdabo

gisters: oA 0\»\00
o

